
1

7-1 a

Section 7Section 7

Program Sequencer

2

7-2 a

Watchdog
And Timers

DMA Controller

UART0
IRDA

Real Time Clock

Programmable
flags

SPORTs SPI

EBIU

1KB internal
Boot ROM

CORE/SYSTEM BUS INTERFACE

32 Core D1 bus 64 Core I bus

Core
Timer

JTAG/
Debug

Performance
Monitor

Core
Processor

L1
Instruction
Memory

L1 Data

Memory
LD1 32

64

PPI

Peripheral Access Bus (PAB)

DMA Access Bus
(DAB)

External Access Bus
(EAB)

Power
Management

Event
Controller

32DMA Mastered
bus

ADSP-BF533 Block Diagram

Core DA0 bus32 32
Core D0 bus

Core DA1 bus32
Core Clock (CCLK) Domain

System Clock (SCLK) Domain

LD0 32

16 1616

16

External Port Bus
(EPB)

DMA Ext Bus
(DEB)

16

DMA Core Bus (DCB)16

SD32

Data
Address
Control

3

7-3 a

Program Sequencer FeaturesProgram Sequencer Features

• The Program Sequencer controls all program flow:

− Maintains Loops, Subroutines, Jumps, Idle, Interrupts and
Exceptions

− Contains an 10-stage instruction pipeline

− Includes Zero-Overhead Loop Registers

4

7-4 a

Program SequencerProgram Sequencer

5

7-5 a

SequencerSequencer--Related RegistersRelated Registers

6

7-6 a

Program Flow InstructionsProgram Flow Instructions
Instruction FunctionProgram Flow Instruction

Set up Hardware LoopLSETUP
Return from Flow interrupterRTS,RTI,RTX,RTN,RTE
Subroutine callCALL

Conditional BranchIF CC JUMP
IF !CC JUMP

Unconditional BranchJUMP

• Jump (P5); /* indirect jump instruction */
• Jump (PC + P3); /* indirect jump with offset (PC-relative) */
• Call (P5); /* RETS register is loaded with address

of instruction after call */
• Call (PC + P3); /* RETS register is loaded with address

of instruction after call */
• IF CC Jump <label>; /* jump on condition cc=1 */
• Call <label>; /* OK within 24-bit offset from PC */

7

7-7 a

Conditional Execution Conditional Execution –– CC BitCC Bit

• Condition Code Flag (CC bit) resolves
− Conditional branch

• e.g., IF !CC JUMP TO_END;
− Conditional move

• e.g., IF CC r0 = r1;
• Some ways to access CC to control program flow

− Dreg value can be copied to CC, and vice-versa
− Status flag can be copied into CC, and vice-versa

• e.g., CC = AV1;
− CC can be set to result of a Preg comparison
− CC can be set to result of a Dreg comparison

• e.g., CC = R3==R2;
− BITTST instruction

• Refer to Chapter 4 in Workshop for more info on CC bit

8

7-8 a

ADSPADSP--BF533 Execution PipelineBF533 Execution Pipeline

• 10-stage super-pipeline

• The sequencer ensures that the pipeline is fully interlocked and
that all the data hazards are hidden from the programmer

• If executing an instruction that requires data to be fetched, the
pipeline will stall until that data is available

9

7-9 a

Instruction PipelineInstruction Pipeline

10

7-10 a

ADSPADSP--BF533 Execution PipelineBF533 Execution Pipeline

T

I

M

E

Inst
Fetch1

Inst
Fetch2

Inst.
Decode

Address
Calc Ex1 Ex2 Ex3 Ex4Inst

Fetch3 WB

Inst
Fetch1

Inst
Fetch2

Inst.
Decode

Address
Calc Ex1 Ex2 Ex3 Ex4Inst

Fetch3 WB

IF1 IF2 IF3 DC AC EX1 EX2 EX4 WB
1
2
3
4
5
6
7
8
9
10

Insta

Inst3

Inst2 Inst1

Insta

Insta

Insta

Inst4

Insta

Inst5

Insta

Inst6

Insta

Inst7

Insta

Inst8

Insta

Inst9

Insta

Pipeline Stage

Inst3

Inst4

Inst5

Inst6

Inst7

Inst8

Inst9

EX3
Inst4

Inst5

Inst6

Inst7

Inst8

Inst9

Inst5

Inst6

Inst7

Inst8

Inst9

Inst6

Inst7

Inst8

Inst9

Inst7

Inst8

Inst9

Inst8

Inst9

Inst9

Inst3

Inst4

Inst5

Inst6

Inst7

Inst8

Inst9

Inst2

11

7-11 a

Pipeline EventsPipeline Events

• Stall
− A latency stall condition can occur when two instructions require extra

cycles to complete, because they are close to each other in the assembly
program. Other stalls can be memory or loop related. Stalls can be
diagnosed with the Pipeline Viewer, and can be remedied with some
rescheduling.

• Kill
− Instructions after a branch are invalidated in the pipeline, because they will

have entered the pipeline before the actual branch instruction gets serviced

• Multicycle Instruction
− These instructions take more than one cycle to complete. These extra

cycles cannot be avoided without removing the instruction that caused
them.

• See EE-197 Appnote for a complete list of stalls and multicycle
instructions.

12

7-12 a

SSYNC and CSYNC instructionsSSYNC and CSYNC instructions

• SSYNC instruction synchronizes “the System”, executing
everything in the processor pipeline, and completing all pending
reads and writes from peripherals.
− Until SSYNC completes, no further instructions can enter the

pipeline.

• CSYNC instruction synchronizes “the Core”, executing
everything in the processor pipeline
− CSYNC is typically used after Core MMR writes to prevent

imprecise behavior.

13

7-13 a

Some Examples of Stall ConditionsSome Examples of Stall Conditions

• Use of a Preg loaded in the previous instruction causes a 3-cycle stall
− P0=[P1++];
− R0=[P0];

• Use of a Preg which was transferred from Dreg in the previous
instruction causes a 4-cycle stall.
− P0=R0;
− P1=P0+P2;

• Back-to-back multiplication where the result of first multiplication is
used as an operand of the second multiplication causes 1-cycle stall
− R0 = A1+=R1.L*R2.L;
− R1 = A1+=R0.L*R2.L;

• Dual data fetch from the same Bank (A,B), 16KB half-bank (A16
matches), sub-bank (A13 and A12 match), and 32-bit polarity (A2
matches) takes 2 cycles

(e.g. I0 is address 0xFF80 1344, I1 is address 0xFF80 1994)
R1 = R4.L * R5.H (IS) || R2 = [I0++] || [I1++] = R3;

14

7-14 a

Avoiding Pipeline StallsAvoiding Pipeline Stalls
•Most common numeric operations have no instruction latency

•Application note EE-197 available on avoiding stalls

−Gives instruction combinations with associated stall info

VDSP++ 3.5 Pipeline Viewer highlights Stall, Kill conditions

15

7-15 a

Change of Instruction FlowChange of Instruction Flow

• When a change of flow happens, a new address is presented to
the Instruction Memory Unit
− There will be a minimum of four cycles before the new instructions

appear in the decoder (except when utilizing the hardware loop
buffers)

• When an instruction in a given pipeline stage is killed, all the
instructions in stages above it will also be killed

16

7-16 a

Unconditional Branches (JUMPS) in the PipelineUnconditional Branches (JUMPS) in the Pipeline
•The Branch target address calculation takes place in the AC
stage of the pipeline

•For all the unconditional branches, the Branch Target
address is sent to the Fetch address bus at the beginning of
the next cycle (EX1 stage of the branch instruction).

•The latency for all unconditional branches is 4 cycles

2 31 4 5 6 7 8 9 10 11 12 13
IF1

IF2
IF3
DC

AC
EX1

EX2
EX3

EX4
WB

I1
I1

I1
I1

I1
I1

I1
I1

I1
I1

Br
Br

Br

Br
Br

Br
Br

Br
Br

Br

I2
I2

I2

I3

I3
I3

I4

I4
I4

BT

BT
BT
NOP

NOP
NOP

NOP
NOP

NOP NOP

NOP

NOP

NOP
NOP

NOP

NOP
NOP

NOP

NOP
NOP

NOP

NOP
NOP

NOP

NOP
NOP NOP

NOP

BT
BT

BT
BT

I5

I5
I5

I1: Instruction Before the Branch I4: 3rd Instruction After the Branch Br: Branch Instruction

I2: 1st Instruction After the Branch I5: 4th Instruction After the Branch BT: Instruction at the Branch Target

I3: 2nd Instruction After the Branch

17

7-17 a

Conditional Branches (Jumps) in the PipelineConditional Branches (Jumps) in the Pipeline
• Conditional Branches (Jumps) are executed based on the

CC bit.
• A static prediction scheme (based on BP qualifier in

instruction) is used to accelerate conditional branches
− Example: IF CC JUMP user_label (bp) ;

• The branch is handled in the AC stage. In the EX4 stage, the
sequencer compares the true CC bit to the predicted value.
− If mis-predicted, the branch is corrected and the correction address

is put out in the WB stage of the branch instructions

Prediction Taken Not taken

Outcome Taken Not taken Taken Not taken

Total Cycles
to Execute

5 cycles 9 cycles 9 cycles 1 cycle

18

7-18 a

Protection ModelProtection Model

• User mode protected instructions
− RTI, RTX, RTN, RTE
− CLI, STI
− RAISE
− IDLE

• User mode protected registers
− RETI, RETX, RETN, RETE
− SEQSTAT, SYSCFG
− All Memory Mapped Registers

19

7-19 a

Sequencer Status Register (SEQSTAT)Sequencer Status Register (SEQSTAT)

• SEQSTAT contains information about current Sequencer state
and diagnostic information about the last event

20

7-20 a

BF533 System Configuration Register (SYSCFG)BF533 System Configuration Register (SYSCFG)

• SYSCFG controls the processor configuration.

Must be set to 1

21

7-21 a

Hardware Loop BuffersHardware Loop Buffers

• The ADSP-BF533 DSP provides two sets of dedicated registers to support two
zero-overhead nested loops

• One way to load these registers is by using the Loop Setup (LSETUP) instruction;

• If the desired loop size exceeds the largest LSETUP size in the table above,
LT[1:0], LB[1:0], LC[1:0] can be set manually

• If more than 2 nested loops are required, the stack must be used

22

7-22 a

• The two zero-overhead looping mechanisms each use a four-deep
instruction “loop buffer” which acts like a cache

• The loop buffer instructions are the first four instruction of a loop
lsetup(strt, end) lc0 = p4 >> 1;
strt: a1 = r0.h * r1.l, a0 = r0.l * r1.l (is) || r0.l = w[i0++] || r2 = [i3++];

a1 += r0.l * r1.h, a0 += r0.h * r1.h (is) || r0.h = w[i0--];
a1 += r0.h * r2.l, a0 += r0.l * r2.l (is) || r0 = [i1++] || r3 = [i3++];
a1 += r0.h * r2.h, a0 += r0.l * r2.h (is) || r0.l = w[i1++];
a1 += r0.l * r3.l, a0 += r0.h * r3.l (is) || r0.h = w[i1--] || r1 = [i3++];
a1 += r0.h * r3.h, a0 += r0.l * r3.h (is) || r0 = [i2++];
a1 += r0.h * r1.l, a0 += r0.l * r1.l (is) || r0.l = w[i2++] || r2 = [i3++];
a1 += r0.l * r1.h, a0 += r0.h * r1.h (is) || r0.h = w[i2--] || r1 = [i3++];
r6.h = (a1 += r0.h * r2.l), r6.l = (a0 += r0.l * r2.l) (is);

end: mnop || [p1++] = r6 || r0 = [i0++];

• The loop buffer instructions get fetched the first time through the loop,
and are immediately available on subsequent iterations

• The loop buffer is especially helpful if the program resides in external
memory, because of the access latencies involved in that case

Hardware Loop BuffersHardware Loop Buffers

23

7-23 a

LoopLoop--Related StallsRelated Stalls

• The ADSP-BF533 has two loop buffers that correspond to the
two zero-overhead loop units. There are two situations to
consider:
− A 3 cycle stall is incurred if the LSETUP is not immediately followed

by the loop top
− If the first instruction of the loop is 64-bits, it must be 64-bit aligned

or it will incur an additional 1 cycle stall

24

7-24 a

Event ControllerEvent Controller

25

7-25 a

Events (Interrupts / Exceptions)Events (Interrupts / Exceptions)

• The Event Controller manages 5 types of Events:
− Emulation (via SW or external pin)
− Reset (via SW or external pin)
− Non-Maskable Interrupt (NMI) - for events that require immediate

processor attention (via SW or external pin)
− Exception
− Interrupts

• Global Interrupt Enable
• Hardware Error
• Core Timer
• 9 General-Purpose Interrupts for servicing peripherals

26

7-26 a

Interrupts vs. ExceptionsInterrupts vs. Exceptions
INTERRUPTS

• Hardware-generated
− Asynchronous to program

flow
− Requested by a peripheral

• Software-generated
− Synchronous to program flow
− Generated by RAISE

instruction
• All instructions preceding the

interrupt in the pipeline are
killed

EXCEPTIONS

• Service Exception
− Return address is the

address following the
excepting instruction

− Never re-executed
− EXCPT instruction is in this

category
• Error Condition Exception

− Return address is the
address of the excepting
instruction

− Excepting instruction will be
re-executed

The ADSP-BF533 is always in Supervisor
Mode while executing Event Handler
software and can be in User Mode only
while executing application tasks.

27

7-27 a

Exception CausesException Causes

28

7-28 a

Event PrioritiesEvent Priorities
Highest

Lowest

29

7-29 a

BF533 System and Core Interrupt Controllers

IVG1515General Purpose 15

IVG1414General Purpose 14

IVG1313General Purpose 13

IVG1212General Purpose 12

IVG1111General Purpose 11

IVG1010General Purpose 10

IVG99General Purpose 9

IVG88General Purpose 8

IVG77General Purpose 7

IVTMR6Core Timer

IVHW5Hardware Error

-4Reserved

EVSW3Exceptions

NMI2Non Maskable Interrupt

RST1Reset

EMU0Emulator

IVG13DMA 10/11 interrupt (MemDMA1)

IVG13DMA 8/9 interrupt (MemDMA0)

IVG11Timer1 interrupt

IVG11Timer2 interrupt

IVG12PF interrupt A

IVG12PF interrupt B

IVG13Watchdog Timer Interrupt

IVG11Timer0 interrupt

IVG10DMA 7 interrupt (UART TX)

IVG10DMA 6 interrupt (UART RX)

IVG10DMA 5 interrupt (SPI)

IVG9DMA 4 interrupt (SPORT1 TX)

IVG9DMA 3 interrupt (SPORT1 RX)

IVG9DMA 2 interrupt (SPORT0 TX)

IVG9DMA 1 interrupt (SPORT0 RX)

IVG8DMA 0 interrupt (PPI)

IVG8RTC interrupt

IVG7UART error interrupt

IVG7SPI error interrupt

IVG7SPORT1 error interrupt

IVG7SPORT0 error interrupt

IVG7PPI error interrupt

IVG7DMA error (generic)

IVG7PLL Wakeup interrupt
Event Source IVG # Core Event

Name

System Interrupt Source IVG #1

1 Note: Default IVG configuration shown.

30

7-30 a

Event Processing Flow

31

7-31 a

BF533 System Interrupt Status Register (SIC_ISR)BF533 System Interrupt Status Register (SIC_ISR)

• SIC_ISR shows which peripheral interrupts are currently asserted
• Must insure the interrupt-generating mechanism that set the SIC_ISR bit is

cleared before exiting the service routine, or the interrupt will be requested
again!

(Read-only)

32

7-32 a

System Interrupt Mask Register (SIC_IMASK)System Interrupt Mask Register (SIC_IMASK)

• Enable the peripheral to interrupt the core by setting the
corresponding bit in SIC_IMASK

33

7-33 a

System Interrupt Assignment Register 0 System Interrupt Assignment Register 0
(SIC_IAR0)(SIC_IAR0)

• The SIC_IARx registers map system interrupts to core IVG
interrupt vectors.

34

7-34 a

System Interrupt Assignment Register 1 System Interrupt Assignment Register 1
(SIC_IAR1)(SIC_IAR1)

35

7-35 a

System Interrupt Assignment Register 2 System Interrupt Assignment Register 2
(SIC_IAR2)(SIC_IAR2)

36

7-36 a

Core Interrupt Mask Register (IMASK)Core Interrupt Mask Register (IMASK)

• Choose which interrupt to allow servicing of by setting that bit
in IMASK

37

7-37 a

NonNon--interruptible codeinterruptible code

• Instruction CLI disables interrupts
− copies current IMASK to a Dreg
− clears IMASK

• Instruction STI restores IMASK

• Change to IMASK should be done with CLI

CLI R0; //Save IMASK into R0 & clear all interrupt bits in IMASK

BITSET(R0,8); //Set bit 8 of R0

STI R0; //Restore IMASK with change

38

7-38 a

Core Interrupt Latch Register (ILAT)Core Interrupt Latch Register (ILAT)
• A set bit in ILAT indicates when the corresponding event has been

latched
• The bit is cleared upon entry into the Interrupt Service Routine or

by writing a “1” to ILAT[n] when IMASK[n] = 0. (n=5-15)
• RAISE n Instruction (n = 1, 2, 5-15)

− Forces a bit to be set in ILAT. It ‘raises’ the priority of the execution
• EXCPT n Instruction (n= 0-15)

− Forces an exception to occur : EVSW bit is set in ILAT and ‘n’
determines which exception routine to execute

39

7-39 a

Core Interrupt Pending Register (IPEND)Core Interrupt Pending Register (IPEND)

• IPEND tracks currently active or nested interrupts
• IPEND holds current status of all nested events.
• Rightmost bit in IPEND that is currently set indicates interrupt

currently being serviced

(Read-only

except Bit 4)

40

7-40 a

Event Vector Table (EVT)Event Vector Table (EVT)

• Memory-mapped space containing an entry for each event EVT0-
EVT15, corresponding to EMU, RST, NMI, … IVG15
− HW Table with 16 32-bit entries accessed as CORE MMRs
− EVT0-EVT15 are undefined at Reset
− Entries should be programmed in the Reset service routine with the

corresponding Interrupt Service Routine vector
• Each entry holds starting address for that event
• When Event #n occurs, instruction fetch starts at address

location stored in EVTn

41

7-41 a

Interrupt Service RoutineInterrupt Service Routine

• Interrupt vector from the Event Vector Table is used as the next
fetch address

• Return address is saved
− RETI, RETX, RETN, RETE based on event
− All interrupts are disabled until the return address (RETI) is pushed

on the stack
• Processor operating mode is set to supervisor or emulation

42

7-42 a

Nested InterruptsNested Interrupts

• To enable another higher priority interrupt to interrupt this
interrupt RETI must be pushed on the stack.

• The state of the processor needs to be saved onto the Stack:
ISR:

[--SP] = RETI; // Interrupts enabled

[--SP] = ASTAT;

[--SP] = FP;

[--SP] = (Rx,Ax,Px,Ix);

…

(Rx,Ax,Px,Ix) = [SP++];

FP = [SP++];

ASTAT = [SP++];

RETI = [SP++]; // Interrupts disabled

CSYNC; // Wait until RETI load takes effect, may want to use
// SSYNC to confirm system writes have committed.

RTI; // Interrupts enabled

43

7-43 a

NonNon--nested Interruptsnested Interrupts

• RETI does not need to be saved on the stack
• All interrupts remain disabled in the ISR
• The state of the processor should be saved on the stack
• RTI is executed to return from interrupt
• Emulation, NMI and Exceptions are still accepted by the system

44

7-44 a

Deferring Exception ProcessingDeferring Exception Processing

• Exceptions higher priority than interrupts
• If exception handlers are long routines, interrupts are disabled

for long time
• To avoid this situation, the exception handler should be written

to only identify the exception (EXCAUSE field in SEQSTAT
register) and defer the exception processing to a low priority
interrupt by using the RAISE n instruction

45

7-45 a

Interrupt Priority RegisterInterrupt Priority Register
• When code branches from a low-priority interrupt to a high-priority

interrupt the write-buffer increase in size from 2 deep to 8 deep to off-
load the store buffer.

• Frees path to L1 memory (IE: context saving to scratchpad)
• When code returns from a high-priority interrupt to a low-priority, the

core will stall until the write-buffer size decreases back to 2 deep.

46

7-46 a

BF533 L1 Data MemoryBF533 L1 Data Memory

Victim Buffers:
Victimized Write-Back

Cached Data to external
memory

Write Buffer:
Write-Through and
Non-cached Data to

external memory

47

7-47 a

Reference MaterialReference Material

Sequencer

48

7-48 a

Variations in Program FlowVariations in Program Flow

49

7-49 a

MultiMulti--Cycle InstructionsCycle Instructions

• A 32-bit multiply operation is available
− r0 *= r1; // 3 cycles to execute

• The Push Multiple and Pop Multiple instructions take n cycles to
complete, where n is the number of registers pushed or popped,
assuming L1 memory.
− [--SP] = (R7:0, P5:0); // 14 cycles to execute

• Multi-cycle instructions will not execute faster through
rescheduling.

• See EE-197 Appnote for a complete list of stalls and multicycle
instructions

50

7-50 a

Event Processing FlowEvent Processing Flow

E
M

U

N
M

I
R

S
T

IMASK

E
V

S
W

Awake from IDLE!

IV
H

W
IV

TM
R

IVG
7

IVG
8

IVG
9

IVG
10

IVG
11

IVG
12

IVG
13

IVG
14

IVG
15

SIC_IARx

S
IC

_IM
A

S
K

S
IC

_IW
R

S
IC

_IS
R

IVG
6

IVG
5

IVG
3

IVG
2

IVG
1

IVG
0

“Event A“

0xFFA
0 1000

FFA0 1000

FFA0 1002

FFA0 1004

FFA0 1008

FFA0 100C

FFA0 1010

FFA0 1012

FFA0 1014

FFA0 1016

[- -sp] = P4;

[- -sp] = R4;

R4.l = 0x1000;

P4.H = hi(FLAG_C);

P4.L = lo(FLAG_C);

W[P4] = R4;

R4 = [sp++];

P4 = [sp++];

RTI;

IPEND

C
O

R
E PIPE LIN

E

11

EVT

Keep ILAT Cleared
0

Clear IPEND

ILAT

1

Clear SIC_ISR

R0

CLI R0; // 0000

STI R0; // IMASK = R0;

Watchdog
MEMDMA1
MEMDMA0

PF B
PF A

Timer 2
Timer 1
Timer 0

DMA7 (UART TX)
DMA6 (UART RX)

DMA5 (SPI)
DMA4 (Sport1 TX)
DMA3 (Sport1 RX)
DMA2 (Sport0 TX)
DMA1 (Sport0 RX)

DMA0 (PPI)
RTC
…..

DMA Error
PLL Wakeup

51

7-51 a

Core Event Control RegistersCore Event Control Registers

Respective
interrupt enabled

Respective interrupt pending or
active

Respective interrupt
latched

General Purpose
Interrupts #7-#15

IVG7-157-15

Interrupt enabledInterrupt pending or activeInterrupt latchedCore Timer InterruptIVTMR6

Interrupt enabledInterrupt pending or activeInterrupt latchedHardware Error InterruptIVHW5

<reserved>Interrupts globally disabled<reserved>Global Interrupt Disable4

<reserved>Event pending or activeEvent latchedException EventEVX3

<reserved>Interrupt pending or activeInterrupt latchedNon-maskable InterruptNMI2

<reserved>Event pending or activeEvent latchedReset EventRST1

<reserved>Event activeEvent latchedEmulation EventEMU0

IMASK=1
means

IPEND=1 meansILAT=1
means

DescriptionEvent
Name

Bit

52

7-52 a

SemaphoresSemaphores

53

7-53 a

SemaphoresSemaphores

• Semaphores provide a way of signaling between separate
processes
− A background task may be waiting for a semaphore that may be

provided by an ISR before it can start. The semaphore could
indicated the presence of a new buffer of data.

− CoreA and CoreB could be sharing a buffer in memory, but only
one can access at a time. A semaphore would be used to provide
exclusive access by one core or the other.

• For a mutex (multual exclusion) to be effective, one must be able
to check a semaphore to see if a resource is free and then set a
bit to claim it before the other processor has a chance to claim
it. In other words, the read-check-modify-write must be atomic.

54

7-54 a

TestsetTestset

Testset(preg)
Example

testset(p1);

• This instruction reads the byte pointed to by preg, sets the MSB,
and stores the byte back into memory. If the byte was originally
zero, the CC bit is set. If the byte was originally nonzero, the CC
bit is cleared.
− Typically, a zero is used to indicated a free resource. If CC tests

true, the resource is now claimed exclusively for the process.
When done with the resource, the process must clear the
semaphore.

− If CC tests false, it indicates that the resource is being used.
Typically, the process waits until the resource becomes free by
spinning in a tight loop.

