
1

6-1 a

Section 6Section 6

Blackfin ADSP-BF533 Memory

2

6-2 a

Watchdog
And Timers

DMA Controller

UART0
IRDA

Real Time Clock

Programmable
flags

SPORTs SPI

EBIU

1KB internal
Boot ROM

CORE/SYSTEM BUS INTERFACE

32 Core D1 bus 64 Core I bus

Core
Timer

JTAG/
Debug

Performance
Monitor

Core
Processor

L1
Instruction
Memory

L1 Data

Memory
LD1 32

64

PPI

Peripheral Access Bus (PAB)

DMA Access Bus
(DAB)

External Access Bus
(EAB)

Power
Management

Event
Controller

32DMA Mastered
bus

ADSP-BF533 Block Diagram

Core DA0 bus32 32
Core D0 bus

Core DA1 bus32
Core Clock (CCLK) Domain

System Clock (SCLK) Domain

LD0 32

16 1616

16

External Port Bus
(EPB)

DMA Ext Bus
(DEB)

16

DMA Core Bus (DCB)16

SD32

Data
Address
Control

3

6-3 a

BlackfinBlackfin Internal SRAMInternal SRAM
ADSP-BF531
(84KB Total)

16KB Data SRAM/Cache16KB Data SRAM/Cache16KB Data SRAM/Cache

4KB Scratchpad 4KB Scratchpad 4KB Scratchpad

16KB Data SRAM/Cache 16KB Data SRAM/Cache

32KB Data SRAM

16KB Instr SRAM/Cache 16KB Instr SRAM/Cache 16KB Instr SRAM/Cache

16KB Instruction SRAM

32KB Instruction SRAM 32KB Instruction SRAM

32KB Instruction SRAM32KB Instruction ROM32KB Instruction ROM

ADSP-BF532
(116KB Total)

ADSP-BF533
(148KB Total)

4

6-4 a

ADSPADSP--BF533 Memory MapBF533 Memory Map

5

6-5 a

ADSPADSP--BF532 Memory MapBF532 Memory Map

6

6-6 a

ADSPADSP--BF531 Memory MapBF531 Memory Map

7

6-7 a

Memory Hierarchy on the BF533Memory Hierarchy on the BF533

• As processor speeds increase (300Mhz – 1 GHz), it becomes
increasingly difficult to have large memories running at full
speed.

• The BF53x uses a memory hierarchy with a primary goal of
achieving memory performance similar to that of the fastest
memory (i.e. L1) with an overall cost close to that of the least
expensive memory (i.e. L2)

L2 Memory

External
Largest capacity
Highest latency

L1 Memory

Internal
Smallest capacity

Single cycle access

CORE

(Registers)

8

6-8 a

Internal Bus Structure of the ADSPInternal Bus Structure of the ADSP--BF533BF533

(L2 Memory)

9

6-9 a

Configurable MemoryConfigurable Memory

• The best system performance can be achieved when executing code
or fetching data out of L1 memory

• Two methods can be used to fill the L1 memory – Caching and
Dynamic Downloading – Blackfin® Processor Supports Both.
− Micro-controllers have typically used the caching method, as they have

large programs often residing in external memory and determinism is
not as important.

− DSPs have typically used Dynamic Downloading as they need direct
control over which code runs in the fastest memory.

• Blackfin® Processor allows the programmer to choose one or both
methods to optimize system performance.

10

6-10 a

Why Do Why Do BlackfinBlackfin®® Processors Have Cache?Processors Have Cache?

• To allow users to take advantage of single cycle memory without
having to specifically move instructions and or data “manually”
− L2 memory can be used to hold large programs and data sets
− The paths to and from L1 memory are optimized to perform with cache

enabled
• Automatically optimizes code that reuses recently used or nearby

data

External L2 Memory:
Largest capacity
Highest latency

Internal L1 Memory:
Smallest capacity

Single cycle access

11

6-11 a

Configurable L1 Memory SelectionsConfigurable L1 Memory Selections

SRAMSRAMSRAMCache

SRAMSRAMSRAMSRAM

SRAMSRAMCacheSRAM

SRAMCacheCacheSRAM

SRAMSRAMCacheCache

SRAMCacheCacheCache

L1 Data
Scratchpad

L1 Data B
(BF533
and BF532
only)

L1 Data AL1 Instruction Using instruction
cache will improve
performance for most
applications

Trade-offs must be
made on code control
and peak short-term
performance

Max bandwidth into L1
memory is available
with cache enabled

Data Cache may or
may not improve
performance

12

6-12 a

Core MMR L1 Memory RegistersCore MMR L1 Memory Registers

• General Control
− IMEM_CONTROL (Instruction Memory)
− DMEM_CONTROL (Data Memory)

• Cache and Protection Properties (n=0 to 15)
− ICPLB_DATAn, ICPLB_ADDRn
− DCPLB_DATAn, ICPLB_ADDRn

• Test Functionality
− ITEST_COMMAND, ITEST_DATA
− DTEST_COMMAND, DTEST_DATA

13

6-13 a

BF533 L1 Instruction MemoryBF533 L1 Instruction Memory

Instruction Bank A
BF531: 32KB ROM
BF532: 32KB ROM
BF533: 32KB SRAM

Instruction Bank B
BF531: 16KB SRAM
BF532: 32KB SRAM
BF533: 32KB SRAM

Instruction Bank C
BF531, BF532, BF533:
16KB SRAM/CACHE

14

6-14 a

L1 Instruction Memory 16KB Configurable L1 Instruction Memory 16KB Configurable
BankBank

Instruction

DCB
- DMA

4KB
sub-bank

EAB
– Cache Line Fill

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

16 KB cache
• 4-way set associative with

arbitrary locking of ways and
lines

• LRU replacement
• No DMA access

16 KB SRAM
• Four 4KB single-ported

sub-banks

• Allows simultaneous core
and DMA accesses to
different banks

15

6-15 a

Features of L1 Instruction Memory UnitFeatures of L1 Instruction Memory Unit

• Instruction Alignment Unit: handles alignment of 16-, 32-, and
64-bit instructions that are to be sent to the execution unit.

• Cacheability and Protection Look-aside Buffer (CPLB): Provides
cacheability control and protection during instruction memory
accesses.

• 256-bit cache Line Fill Buffer: uses four 64-bit word burst
transfers to copy cache lines from external memory.

• Memory test interface: Provides software with indirect access to
tag and data memory arrays.

16

6-16 a

L1 Instruction Memory Control Register

IMEM_CONTROL

17

6-17 a

BF533 L1 Data MemoryBF533 L1 Data Memory

Victim Buffers:
Victimized Write-Back

Cached Data to external
memory

Write Buffer:
Write-Through and
Non-cached Data to

external memory

18

6-18 a

L1 Data Memory 1L1 Data Memory 16KB Configurable Bank 6KB Configurable Bank

Block is Multi-ported when:
Accessing different sub-bank

OR
Accessing one odd and one even

access (Addr bit 2 different)
within the same sub-bank.

Data 1

Data 0

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

4KB
sub-bank

• When Used as Cache
– Each bank is 2-way set-

associative
– No DMA access
– Allows simultaneous

dual DAG access

• When Used as SRAM
– Allows simultaneous

dual DAG and DMA
access

DCB
- DMA

EAB
– Cache Line Fill

19

6-19 a

BF533 L1 Data MemoryBF533 L1 Data Memory
Data Bank BData Bank ASub-Bank

0xFF90 7000
0xFF90 6000
0xFF90 5000
0xFF90 4000
0xFF90 3000
0xFF90 2000
0xFF90 1000
0xFF90 0000

CONFIGURABLE

0xFF80 40005
0xFF80 50006
0xFF80 60007

0xFF80 30004

0xFF80 70008

0xFF80 20003
0xFF80 10002

SRAM

0xFF80 00001

L1 configurable data memory can be:

• Both banks A & B as SRAM

• Bank A as cache, bank B as SRAM

• Both banks as cache

20

6-20 a

BF532 L1 Data MemoryBF532 L1 Data Memory
Data Bank BData Bank ASub-Bank

0xFF90 7000
0xFF90 6000
0xFF90 5000
0xFF90 4000
0xFF90 3000
0xFF90 2000
0xFF90 1000
0xFF90 0000

CONFIGURABLE

0xFF80 40005
0xFF80 50006
0xFF80 60007

0xFF80 30004

0xFF80 70008

0xFF80 20003
0xFF80 10002

SRAM

0xFF80 00001

L1 configurable data memory can be:

• Both banks A & B as SRAM

• Bank A as cache, bank B as SRAM

• Both banks as cache

21

6-21 a

BF531 L1 Data MemoryBF531 L1 Data Memory
Data Bank BData Bank ASub-Bank

0xFF90 7000
0xFF90 6000
0xFF90 5000
0xFF90 4000
0xFF90 3000
0xFF90 2000
0xFF90 1000
0xFF90 0000

CONFIGURABLE

0xFF80 40005
0xFF80 50006
0xFF80 60007

0xFF80 30004

0xFF80 70008

0xFF80 20003
0xFF80 10002

SRAM

0xFF80 00001

L1 configurable data memory can be:
•Bank A as SRAM
•Bank A as Cache

22

6-22 a

L1 Data Memory SRAM AddressingL1 Data Memory SRAM Addressing

• Both DAG units can access Data Banks A & B
• If an address conflict is detected Data Bank priority is as

follows:
1. System DMA (highest priority)
2. DAG Unit 0
3. DAG Unit 1 (lowest priority)

• Parallel DAG accesses can occur to the same Data Bank as long
as the references are to different sub-banks OR they access 2
words of different 32-bit address polarity (Address bit 2 is
different).

23

6-23 a

Dual Access to Same SubDual Access to Same Sub--BankBank

28292A2B2C2D2E2F

2021222324252627

18191A1B1C1D1E1F

1011121314151617

08090A0B0C0D0E0F

0001020304050607

A2 = 1 (odd) A2 = 0 (even)

A dual access to an odd and even
(quad address) location can be
performed in a single cycle

A dual access to two odd or two
even locations will result in an
extra cycle (1 stall) of delay

24

6-24 a

L1 Scratchpad MemoryL1 Scratchpad Memory

• Dedicated 4KB Block of Data SRAM
• Operates at CCLK rate
• Can not be configured as Cache
• Can not be accessed by DMA
• Typical Use is for User and Supervisor stacks to do fast context

switching during interrupt handling.

25

6-25 a

L1 Data Memory Control Register
DMEM_CONTROL

26

6-26 a

Cache ModeCache Mode

27

6-27 a

What is Cache?What is Cache?

• In a hierarchical memory system, cache is the first level of
memory reached once the address leaves the core (i.e L1)
− If the instruction/data word (8, 16, 32, or 64 bits) that corresponds

to the address is in the cache, there is a cache hit and the word is
forwarded to the core from the cache.

− If the word that corresponds to the address is not in the cache,
there is a cache miss. This causes a fetch of a fixed size block
(which contains the requested word) from the main memory.
• The Blackfin allows the user to specify which regions (i.e.

pages) of main memory are cacheable and which are not
through the use of CPLBs (more on this later).
− If a page is cacheable, the block (i.e. cache line containing 32

bytes) is stored in the cache after the requested word is
forwarded to the core

− If a page is non-cacheable, the requested word is simply
forwarded to the core

28

6-28 a

ADSPADSP--BF533 Instruction Cache OrganizationBF533 Instruction Cache Organization
• Cache Line:

− A 32 byte contiguous
block of memory

• Set:
− A group of cache lines in

the cache
• Selected by Line

Address Index
• Way:

− One of several places in
a set that a cache line
can be stored
• 1 of 4 for Instructions
• 1 of 2 for Data

• Cache Tag:
− Upper address bits

stored with cache line.
Used to ID the specific
address in main memory
that the cached line
represents

29

6-29 a

Instruction Cache Placement Based On Instruction Cache Placement Based On
AddressAddress

16171819202122232425262728293031

0123456789101112131415

20 Bit Tag

Sub-bank Select Line Select Byte Select

•Four 4KB sub-banks (16KB total)

•Each sub-bank has 4-ways (1KB for each way)

•Each way has 32 lines

•Each line is 32 bytes

30

6-30 a

Cache Hits and MissesCache Hits and Misses

• A cache hit occurs when the address for an instruction fetch
request from the core matches a valid entry in the cache.

• A cache hit is determined by comparing the upper 18 bits, and bits
11 and 10 of the instruction fetch address to the address tags of
valid lines currently stored in a cache set.

• Only valid cache lines (i.e. cache lines with their valid bits set) are
included in the address tag compare operation.

• When a cache hit occurs, the target 64-bit instruction word is sent to
the instruction alignment unit where it is stored in one of two 64-bit
instruction buffers.

• When a cache miss occurs, the instruction memory unit generates a
cache line-fill access to retrieve the missing cache line from external
memory to the core.

31

6-31 a

Instruction Fill from L2 MemoryInstruction Fill from L2 Memory

64 bits

64 bits64 bits64 bits64 bits

•Cache Off
–64 bits

•Cache On
–Burst Cache Line fill (32-bytes)

32

6-32 a

Cache Line FillsCache Line Fills

• A cache line fill consists of fetching 32 bytes of data from memory
external to the core (i.e. L2 memory).

• A line read data transfer consists of a four 64-bit word read burst.
• The instruction memory unit requests the target instruction word

first; once it has returned the target word the IMU requests the next
three words in sequential address order and wrap around if
necessary.

WD3, WD0, WD1, WD2WD3

WD2, WD3, WD0, WD1WD2

WD1, WD2, WD3, WD0WD1

WD0, WD1, WD2, WD3WD0

Fetching Order for Next
Three Words

Target Word

33

6-33 a

Cache LineCache Line--Fill BufferFill Buffer

• The cache line-fill buffer allows the core to access the data from
the new cache line as the line is being retrieved from external
memory, rather than having to wait until the line has been
completely written to the 4KB memory block.

• The line-fill buffer organization is shown below:

• The line-fill buffer is also used to support non-cacheable
accesses*. A non-cacheable access consists of a single 64-bit
transfer on the instruction memory unit’s external read port.

* A non-cacheable access includes: external accesses when instruction memory is
configured as SRAM, or accesses to non-cacheable pages

34

6-34 a

Cache Line ReplacementCache Line Replacement

• The cache line replacement unit first checks for invalid entries.
• If only a single invalid entry is found then that entry is selected

for the new cache line. If multiple invalid entries are found the
replacement entry for the new cache line is selected based on
the following priority:

• When no invalid entries are found, the cache replacement logic
uses a 6-bit LRU algorithm to select the entry for the new cache
line.

• For instruction cache the LRUPRIO bit is also considered.

• way 0 first
• way 1 next
• way 2 next
• way 3 last

35

6-35 a

Instruction Cache Instruction Cache ““Locking By LineLocking By Line””
(LRUPRIO)(LRUPRIO)

• Prevents the Cached Line from being replaced
• CPLB_LRUPRIO bits in the ICPLB_DATAx register define the

priority for that page.
• The Cache line importance level (LRUPRIO) is saved in the TAG

and used by the replacement policy logic.
• Cache Line Replacement policy with LRUPRIO

− No invalid entries:
• A high priority will replace a low priority or a high priority if all 4-

ways contain high priority lines.
• LRU (least recently used) policy is used to determine which one

of the lines that have the same priority will be replaced.
• Setting the IMEM_CONTROL: LRUPRIORST bit clears all

LRUPRIO bits in the TAGs.

36

6-36 a

Instruction Cache Locking By WayInstruction Cache Locking By Way

• Each 4KB way of the instruction cache can be locked
individually to ensure placement of performance-critical code.

• Controlled by the ILOC<3:0> bits in the IMEM_CONTROL
register.

37

6-37 a

Data Cache ModeData Cache Mode

38

6-38 a

Data Cache Placement Based On AddressData Cache Placement Based On Address

16171819202122232425262728293031

0123456789101112131415

19 Bit Tag

Sub-bank Select Line Select Byte Select

•Four 4KB sub-banks (16KB total)

•Each sub-bank has 2-ways (2KB for each way)

•Each way has 64 lines

•Each line is 32 bytes

•If Both Data Bank A and B are set for Cache, bit 14 or 23 is used to
determine which Data Bank.

39

6-39 a

Data Cache DefinitionsData Cache Definitions

• Write Through:
− A cache write policy where write data is written to the cache line

and to the source memory.
• Write Back:

− A cache write policy where write data is written only to the cache
line. The modified cache line is written to source memory only
when it is replaced.

• Dirty/Clean (Applies to Write Back Mode only):
− State of cache line indicating whether the data in the cache has

changed since it was copied from source memory

• Performance trade-off required between write through and write
back to determine the best policy to use for an application.

40

6-40 a

Data Cache Victim BufferData Cache Victim Buffer

• The victim buffer is used to read a dirty cache line either being
flushed or replaced by a cache line fill and then to initiate a
burst write operation on the bus to perform the line copyback to
the system.

• The processor can continue running without having to wait for
the data to be written back to L2 memory.

• The victim buffer is comprised of a 4-deep FIFO each 64-bits in
width (similar to the fill-buffer.)

• There is no data forwarding support from the victim buffer.

41

6-41 a

CacheabilityCacheability Protection Protection LookasideLookaside Buffers Buffers
(CPLBS)(CPLBS)

42

6-42 a

Memory Protection and Cache PropertiesMemory Protection and Cache Properties

• Memory Management Unit
− Cacheability and Protection Look-Aside Buffers (CPLBs)
− Cache/protection properties determined on a per memory page basis

(1K, 4K, 1M, 4M byte sizes)
− 32 CPLBs total: 16 CPLBs for instruction memory, 16 CPLBs for data

memory
• User/Supervisor Access Protection
• Read/Write Access Protection
• Cacheable or Non-Cacheable

43

6-43 a

Using CPLBsUsing CPLBs

• Cache enabled:
− CPLB must be used to

define cacheability
properties

• Cache disabled:
− CPLBs can be used to

protect pages of memory

• When CPLBS are enabled, a valid CPLB must exist before
an access to a specific memory location is attempted.
Otherwise, an exception will be generated.

• User and Supervisor mode protection is available without
using CPLBs.

44

6-44 a

Cacheability Protection Lookaside Buffers Cacheability Protection Lookaside Buffers
(CPLBs)(CPLBs)

• Divide the entire Blackfin memory map into regions (i.e. pages) that
have cacheability and protection properties.

• 16 Pages in Instruction Memory plus 16 Pages in Data memory
− Page sizes: 1KB, 4KB, 1MB, 4MB

• Each CPLB has 2 associated registers:
− 32bit Start Address: ICPLB_ADDRn, DCPLB_ADDRn
− Cache/Protection Properties: ICPLB_DATAn, DCPLB_DATAn

Note: “n” equals 15:0

45

6-45 a

ICPLB_DATAnICPLB_DATAn RegisterRegister

Note: “n” equals 15:0

46

6-46 a

DCPLB_DatanDCPLB_Datan RegisterRegister

Note: “n” equals 15:0

*Bits 17:16 Page Size[1:0] same as ICPLB Register

47

6-47 a

Example Protection OperationExample Protection Operation

• Set up CPLBs to define regions and properties:
− Default hardware CPLBs are present for MMRs and scratchpad

memory.
− CPLBs must be configured for L1 Data and L1 Instruction Memory as

Non-Cacheable
− Disable all memory other than the desired memory space.
− Execute Code.

• If code tries to access memory that has been ‘disabled’ or
protected, then a ‘memory protection violation’ occurs as an
exception.

48

6-48 a

Example CPLB SetupExample CPLB Setup

Async: Non-cacheable
One 4MB page

SDRAM: Cacheable
Eight 4MB pages

L1 Instruction: Non-cacheable
1MB page

Async: Non-cacheable
One 4 MB page

SDRAM: Cacheable
Eight 4MB pages

L1 Data: Non-cacheable
One 4MB page

Instruction CPLB setup

Data CPLB setup

Async: Cacheable
Two 4MB pages

Async: Cacheable
One 4 MB page

Memory management handles exceptions and redefines external memory pages as required for
external memory. Examples will be provided to customers.

49

6-49 a

Accessing the Cache DirectlyAccessing the Cache Directly

• Once L1 memory is configured as cache, it can’t be accessed
via DMA or from a core read.

• ITEST_COMMAND and ITEST_DATA memory mapped registers
do allow direct access to Instruction Memory tags and lines.

• Analogous registers exist for Data Cache.
• Can be useful for invalidating cache lines directly.

50

6-50 a

Data Cache Control InstructionsData Cache Control Instructions

• Prefetch: Causes data cache to prefetch line associated with address
in P-register
− Causes line to be fetched if it is not currently in the cache and the location

is cacheable
− Otherwise it behaves like a nop

• Prefetch [p2];
• Prefetch [p2 ++]; // post increment by cache-line size

• FLUSH: Causes data cache to synchronize specified cache line with
higher levels of memory
− If the line is dirty, it is written out and marked clean

• flush [p2];
• flush [p2 ++]; // post increment by cache-line size

• FLUSHINV: Causes data cache to invalidate a specific line in cache.
− If the line is dirty, it is written out:

• flushinv [p2];
• flushinv [p2 ++]; // post increment by cache-line size

51

6-51 a

Instruction Cache Control InstructionsInstruction Cache Control Instructions

• IFLUSH: Causes instruction cache to invalidate a specific line in
cache.
− iflush [p2];
− iflush [p2 ++]; // post increment by cache-line size

52

6-52 a

Coherency ConsiderationsCoherency Considerations

• Care must be taken when memory that is defined as “cacheable”
is modified by outside source
− DMA controller (data or descriptors)

• Cache is not aware of these changes so some mechanism must
be setup
− Simple memory polling will not work
− Must Invalidate the cache before accessing the changed L2

memory.

L1
Cache

L2
Memory

External Device

53

6-53 a

Reference MaterialReference Material

Memory

54

6-54 a

Data ByteData Byte--OrderingOrdering

• The ADSP-BF533 architecture supports little-endian byte-
ordering

• For example, if the hex value 0x76543210 resides in register r0
and the pointer register p0 contains address 0x00ff0000, then
the instruction “[p0] = r0;” would cause the data to be written to
memory as shown below:

• When loading a byte, half-word, or word from memory to a
register, the LSB (bit 0) of the data word is always loaded into
the LSB of the destination register

DataByte Address

0x760x00ff0003

0x540x00ff0002

0x320x00ff0001

0x100x00ff0000

55

6-55 a

Instruction PackingInstruction Packing

• Instruction set tuned for compact
code:
− Multi-length instructions

• 16, 32, 64-bit opcodes
• Limited multi-issue instructions

• No memory alignment restrictions
for code:
− Transparent alignment H/W.

16-bit OP
32-bit OP

16-bit wide
memory

015

64-bit Multi-OP

No Memory Alignment Restrictions:
Maximum Code Density and Minimum

System Memory Cost

Instruction Formats

56

6-56 a

Instruction FetchingInstruction Fetching

• 64-bit instruction line can fetch between 1 and 4 instructions

One 64-bit instruction

One 32-bit instruction One 32-bit instruction

One 16-bit instruction One 16-bit instructionOne 16-bit instruction One 16-bit instruction

One 16-bit instructionOne 16-bit instructionOne 32-bit instruction

