
1

17-1 a

Section 17Section 17

ADSP-BF533 VisualDSP++
C/C++ Compiler

2

17-2 a

Strategic Objective:Strategic Objective:
Make C as fast as assembler!Make C as fast as assembler!

Advantages:
C is much cheaper to develop.
C is much cheaper to maintain.
C is comparatively portable.

• Disadvantages:
ANSI C is not designed for DSP.
DSP processor designs usually expect assembly in key areas.
DSP applications continue to evolve.

3

17-3 a

The Performance CurveThe Performance Curve

0
10
20
30
40
50
60
70
80
90

100

-20 -10 0 10 20 30 40 50 60 70 80 90 100
Percentage written in assembler

Pe
rc

en
ta

ge
 O

pt
im

al

A

B

C D

INCREASING AMOUNT OF REWORK
100%
asm

Major improvements
working with C program
Major improvements

working with C program

Redo critical areas in assembly
Language if required.

Redo critical areas in assembly
Language if required.

Out of the Box
Starting point
Out of the Box
Starting point

*

4

17-4 a

Pillars of Effective ProgrammingPillars of Effective Programming

• Understand Underlying Hardware Capabilities
• Discover What Compiler Can Provide
• Design Program Effectively

− general choice of algorithm
− choice of data representation
− finer low-level programming decisions

• Usually the process of performance tuning is a specialisation of the program
for particular hardware. It may grow larger or more complex and is less
portable.

5

17-5 a

C Compiler (VDSP++ 4.0)C Compiler (VDSP++ 4.0)

State-of-the-art optimizer.
Provides flexibility
Ease of adding architecture-specific optimizations

Exploitation of explicit parallelism in the architecture
Vectorization – exploiting wide load capabilities
Recognizing SIMD opportunities
Software pipelining

Whole Program Analysis
A wider view enables the optimizer to be more aggressive.

6

17-6 a

Other features with VDSP 4.0Other features with VDSP 4.0

• long long support - 64-bit integer support
• Enhanced GNU compatibility features.
• compiler built-ins added for Blackfin video operations.
• ADSP-BF561 support
• multiple-heap support
• improved cache support
• C++ Exception Handling
• Profile-Guided Optimization
• Software emulated 64 bit integers.

• 64-bit IEEE floating-point support - long double
Emulated support with hand coded compiler support routines will be added in a future

release

7

17-7 a

Understanding Underlying HardwareUnderstanding Underlying Hardware
• Isn’t C supposed to be portable & machine independent?

− yes, but at a price!
− Uniform computational model, BUT….

• missing operations provided by software emulation (slow)
• for example: C provides floating point arithmetic everywhere

− C is more machine-dependent than you might think
• for example: is a “short” 16 or 32 bits? (more later)

• Machine’s Characteristics will determine your success.

C programs can be ported with little difficulty.

But if you want high efficiency, you can’t ignore
the underlying hardware

*

8

17-8 a

Evaluate Algorithm against Hardware.Evaluate Algorithm against Hardware.

• What’s the native arithmetic support?
− Can we use floating point hardware?
− how wide is the integer arithmetic?

• doing 64-bit arithmetic on a 32-bit unit is slow
• doing 16-bit arithmetic on a 32 bit part is awkward

− Can we use packed data operations?
• 2x16 arithmetic might be ideal for your application

(more computation per cycle, less memory usage)
• implications for data types, memory layout, algorithms

• What is the computational bandwidth and
throughput?
− what are the key operations required by your algorithm?
− (macs?, loads?, stores?….)
− how fast can the computer perform them?

9

17-9 a

Signal Processing Unique ChallengesSignal Processing Unique Challenges

• Special Aspects of Digital Signal Processors:
− Reduced memory
− Extended precision accumulators
− Specialized architectural features

If not well modeled by C : lose portability and efficiency
• Example: Zero overhead loop – good
• Fractional arithmetic - problem.

− mathematical focus (historically not C’s orientation)

• Features which compiler must exploit
− Efficient Load / Store Operations in Parallel
− Utilize multiple Data-paths; SISD, SIMD, MIMD operations
− minimize memory utilization

10

17-10 a

C and the CompilerC and the Compiler

• C provides common computational model
− portability
− higher level

• Compiler’s job: map this to a particular machine
− tries for optimal use of instructions
− supplement by instruction sequences or library calls

• Optimizer improves performance
− do things less often, more cheaply
− try to utilize resources fully

• Optimizing Compiler has Limited Scope
− will not make global changes
− will not substitute a different algorithm
− will not significantly rearrange data or use different types
− correctness as defined in the language is the priority

11

17-11 a

Example C ProgramExample C Program
// Simple dot product example

extern short* x;
extern short* y;

short dot (void)
{

short s = 0;
int j;

for (j=0; j<1024; j++)
{

s += x[j]*y[j];
}
return s;

}

12

17-12 a

Compiler Produced Assembly Code (.s File)Compiler Produced Assembly Code (.s File)

.section program;

.align 2;
_dot:
.LN1:

P0.L = _x;
P1.L = _y;
P0.H = _x;
P1.H = _y;
P0=[P0+ 0];
P1=[P1+ 0];
R2 = 3;
link 0;

// -- 3 bubbles --
R0 = P0 ;
R1 = P1 ;
R0 = R0 | R1;
R0 = R0 & R2;
CC = R0 == 0;
IF !CC JUMP ._P1L2 ;

I0 = P0 ;
.LN2:

P2 = 511 (X);
A1=A0=0 || R1 = [P1++] || R0 = [I0++];
LSETUP (._P1L4 , ._P1L5-8) LC0=P2;

.align 8;

._P1L4:

.LN3:
A1+= R1.H*R0.H, A0+= R1.L*R0.L (IS) || R1 = [P1++] || R0 = [I0++];

.LN4:
// end loop ._P1L4;

._P1L5:

.LN5:
A1+= R1.H*R0.H, A0+= R1.L*R0.L (IS) || P0=[FP+ 4] || NOP;

Load address of x and y pointers
into P1 and P0, respectively

Load pointers to x and y pointers into P1 and P0

Check that pointers to x and y are
on quad aligned boundaries

If not, jump to ._P1L1

Otherwise, fetch and perform
operations on 2x16 bit words at a
time

13

17-13 a

Compiler Produced Assembly Code (.s File)Compiler Produced Assembly Code (.s File)

.LN6:
A0+=A1;

.LN7:
R0 = A0.w;

.LN8:
R0 = R0.L (X);
unlink;

// -- 2 bubbles --
JUMP (P0);

._P1L2:
I0 = P0 ;
P2 = 1023 (X);
A0 = 0 || R0 = W[P1++] (X) || R1.L = W[I0++];
LSETUP (._P1L8 , ._P1L9-8) LC0=P2;

.align 8;

._P1L8:

.LN9:
A0 += R0.L*R1.L (IS) || R0 = W[P1++] (X) || R1.L = W[I0++];

.LN10:
// end loop ._P1L8;

._P1L9:

.LN11:
A0 += R0.L*R1.L (IS) || P0=[FP+ 4] || NOP;
R0 = A0.w;

.LN12:
R0 = R0.L (X);
unlink;

// -- 2 bubbles --
JUMP (P0);

Complete SIMD dot product and
return

Perform non-SIMD fetch and
operations on non-quad aligned
data

14

17-14 a

C++C++
• C++ Programs can have high efficiency

− depends which features are used: pay as you go
• “Same as C” runs at same efficiency
• Overloaded functions, namespaces: no cost
• Classes for modularity / new data types:

− no inherent cost
− pointer-based data will be slower (also aliasing problems)
− templates not inherently slower

• Inheritance: no cost
• Virtual functions: slight cost

C++ capability is great for porting control code or expert programming,
But the greater capability to abstract leads to programs are harder to tune
and often have hidden or unexpected performance problems.

15

17-15 a

Summary:Summary:
How to go about increasing performance.How to go about increasing performance.

1. Work at high level first
most effective -- maintains portability

− improve algorithm
− make sure it’s suited to hardware architecture
− check on generality and aliasing problems

2. Look at machine capabilities
− may have specialized instructions (library/portable)
− check handling of DSP-specific demands

3. Non-portable changes last
− in C?
− in assembly language?
− always make sure simple C models exist for verification.

• Compiler will improve with each release

16

17-16 a

ADSPADSP--BF533 C/C++ CompilerBF533 C/C++ Compiler

• Compiler
− Invoked Via IDDE Using Settings from Compiler Property Page
− Invoked from a DOS Command Line (ccblkfn.exe)

• Linker Description File (LDF)
− Defines Segments in Memory for Code and Data
− Defines Segment in Memory for the Stack
− Defines Segment in Memory for the Heap

• Run Time Header
− Run Time Header created by startup wizard when project is created
− Linker Options Determine Which C Run-Time Libraries To Use

• Size, File I/O, C++ Are All Selectable
− Provides Interrupt Handling
− Initializes C/C++ Run-Time Environment
− Must Be Linked With C/C++ Code

• Done by LDF

17

17-17 a

Compile / General Property PageCompile / General Property Page

Generates DWARF-2 debug
information. Allows users to

debug projects and set
breakpoints in C source
code. Corresponds to –g

switch*.

Corresponds to –no-builtins
switch. Allows use of only

ANSI-standard built-in
functions.

Corresponds to –O compiler switch*.
Optimizes source code for better

performance.

* - Using ‘–O –g’ gives preference to optimization. Using ‘-Og’ gives preference to debug.

Allows compiler to optimize
across translation units

instead of within individual
translation units. Compiler
sees all the source files used
in a final link at compilation

time and uses that information
while optimizing. Corresponds

to the –ipa compiler switch.

Any compiler switch can
be specified here

18

17-18 a

Supported Data FormatsSupported Data Formats

19

17-19 a

Linker Description File for C/C++ ProgrammingLinker Description File for C/C++ Programming

• Memory Description
− Define Memory Segments
− Map Input Sections (Names Produced by Compiler) to Memory

Segments

• Run Time Stack Supported
− Stack Used for Branching, Local Variables, Arguments
− LDF Defines Stack Size and Location

• Run Time Heap Supported
− Used For Memory Management Protocols (malloc, free, etc)
− LDF Defines Heap Size, Location, and Name (For Multiple Heap

Support)

20

17-20 a

CompilerCompiler--Generated Memory Section NamesGenerated Memory Section Names

• Compiler uses default section names that are mapped
appropriately by the linker (through the LDF)

− program - contains all program instructions
− data1 - contains all global and “static” data
− constdata - contains all data declared as “const”
− ctor - C++ constructor initializations
− cplb_code – code CPLB config tables
− cplb_data – data CPLB config tables

21

17-21 a

Memory DescriptionsMemory Descriptions

• Define Memory Segments In LDF For:
− Code, Data, Stack*, Heap(s)

• Map Input Sections to Memory Segments
(BF533 Default LDF Segment Names Used)

Segment Name Use
− MEM_L1_CODE code storage
− MEM_L1_CODE_CACHE code storage, if not cache
− MEM_L1_DATA_A used for default compiler data sections
− MEM_L1_DATA_A_CACHE If not used as cache, it becomes heap space
− MEM_L1_DATA_B used for default compiler data sections
− MEM_L1_DATA_B_CACHE If not used as cache, it is used for data
− MEM_L1_DATA_B_STACK dedicated stack space
− MEM_L1_SCRATCH Dedicated 4 Kbyte Data Scratchpad
− MEM_ARGV Optional Command Line Parsing (256 Bytes)
− MEM_SDRAM0_HEAP If L1 Data A used as cache, heap is external
− MEM_SDRAM0 external SDRAM bank
− MEM_ASYNCx (x=0,1,2,3) 1MB Async Banks

22

17-22 a

Software Build Process Software Build Process
Step 1 Example: C Source with Alternate SectionsStep 1 Example: C Source with Alternate Sections

section (“extern”) int array[256];

section (“foo”) void bar(void)
{

int foovar;
foovar = 1;
foovar++;

}

foo.C foo.DOJ

Object Section = foo
Type = RAM
Width = 8
_bar : p0=_foovar;
r0=w[p0]; r0=r0+1;
w[p0] = r0;C-CompilerC-Compiler

Object Section = extern
Type = RAM
Width = 8

_array [0]
_array [1]
…

_array [255]

AssemblerAssembler

Object Section = mem_stack
Type = RAM
Width = 8

_foovar: 1

Note: The section() directive is used to
place data or code into a section other than

the default section used by the compiler.

foo.S

23

17-23 a

Run Time StackRun Time Stack

• 32-Bit Wide Structure Growing in Memory from Higher to Lower
Addresses

• Managed by a Frame Pointer, FP, and a Stack Pointer, SP
− FP Points to Address of Beginning of Frame (Contains Previous

Frame Address)
− SP Points to Last Entry on Stack

• Stack Frame Contains:
− Local Variables
− Temporary Variables
− Function Arguments

24

17-24 a

LDF and the StackLDF and the Stack

• C/C++ Runtime Environment Depends Upon the Initialization of
FP and SP

• Variables Initialized by Constants Defined in the LDF
• ldf_stack_space
• ldf_stack_end

• Variables Used to Initialize FP and SP are Declared and
Initialized in the Assembly File basiccrt.s

25

17-25 a

LDF Stack SetupLDF Stack Setup
(C/C++ Compiler Only)(C/C++ Compiler Only)

• Linker Calculates LDF Stack-Initializing Constants from the
Stack Memory Segment Description

stack
{

ldf_stack_space = .;
ldf_stack_end = ldf_stack_space + MEMORY_SIZEOF(MEM_L1_DATA_B_STACK);

} >MEM_L1_DATA_B_STACK

When Programming In C/C++, This Segment Must be
Included in the SECTIONS() Portion of the LDF

26

17-26 a

LDF and the HeapLDF and the Heap

• Four Library Functions Can Be Used to Allocate or Free Memory
to/from the Heap
− malloc, calloc, realloc, free

• Other C Library Functions Implicitly Use these Four Functions
and ALSO Require the Heap
− memmove, memcopy, etc.

• Initialized by Constants Defined in the LDF
− ldf_heap_space
− ldf_heap_length
− ldf_heap_end

• Multiple Heaps are Possible
− Can be defined at Link Time or at Run Time (see compiler manual)

27

17-27 a

LDF Heap Setup LDF Heap Setup
(C Compiler Only)(C Compiler Only)

• Output Section ‘heap’ Calculates LDF Heap Initializers from Heap Memory
Segment Description

#ifdef USE_CACHE /* { */
heap
{

// Allocate a heap for the application
ldf_heap_space = .;
ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MEM_SDRAM0_HEAP) - 1;
ldf_heap_length = ldf_heap_end - ldf_heap_space;

} >MEM_SDRAM0_HEAP
#else

heap
{

// Allocate a heap for the application
ldf_heap_space = .;
ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MEM_L1_DATA_A_CACHE) - 1;
ldf_heap_length = ldf_heap_end - ldf_heap_space;

} >MEM_L1_DATA_A_CACHE
#endif /* USE_CACHE } */

• When Programming In C, This Section Must be Included in the Sections Portion of
the LDF

• Must Duplicate this Code for Each Defined Heap

28

17-28 a

C Run Time HeadersC Run Time Headers
• Sets Up the C Runtime Environment

− Resets Registers and Initializes Global Data
− Initializes Event Vector Table

• Installs IVG15 vector (lowest priority)
− Enables Interrupts

• Only IVG15 is enabled
− Sets up stack pointer, enables cycle counters
− Allows processor to come up supervisor mode
− Initializes File I/O support, if necessary
− Configures Cache, if necessary
− Initializes profiling support, if necessary
− Initializes multi-thread support, if necessary
− Initializes global C++ objects and sets up destructor calls for clean-up
− Initializes argc/argv support, if necessary
− Calls _main to start the actual program
− Calls _exit when program terminates

• Configured by Startup Wizard with a new project
− Can be modified later through project options window

29

17-29 a

Implementing Interrupts In C On BF533 Implementing Interrupts In C On BF533
• Use Direct Event Vector Table (EVT) Management Functions

− EX_INTERRUPT_HANDLER (ISR_Name)
• Inserts context save/restore code in ISR_Name’s prologue/epilogue
• Appends “RTI;” to return from interrupt

− register_handler (sig_num, ISR_Name)
• Maps ISR_Name’s address into EVTx register indicated by sig_num
• Sets appropriate IMASK bit (indicated by sig_num) and enables interrupts

• Use Interrupt Dispatcher
− interrupt(sig_num, ISR_Name)

• Places ISR_Name’s address into internal look-up table using sig_num as the
index into the table

• Executes implicit call to register_handler(sig_num, _despint)
− Maps Dispatcher’s address to EVTx register associated with sig_num
− Sets associated IVGx bit in IMASK

• When Interrupt Occurs, Dispatcher
− Does full context save/restore
− Polls IPEND register to determine which interrupt occurred
− Uses look-up table to determine ISR vector location

30

17-30 a

Direct EVT Management FunctionsDirect EVT Management Functions
• EX_INTERRUPT_HANDLER() and register_handler() Functions

Usage:
#include<sys\exception.h>
EX_INTERRUPT_HANDLER(ISR_Name);
register_handler (ik_ivg11, ISR_Name);

• EX_INTERRUPT_HANDLER (ISR_Name);
− SAVES current processor state after entry into ISR_Name module
− RESTORES former processor state before exit from ISR_Name module

• 72 cycles to save/restore processor context and perform stack maintenance
− All Data (R0-R7) and Pointer (P0-P5) Registers
− Frame Pointer (FP) and Arithmetic Status Register (ASTAT)
− RETI is NOT part of the context save so interrupt nesting is OFF!!!

• To nest, use EX_REENTRANT_HANDLER (ISR_Name) instead

− Appends RTI Instruction At End Of “ISR_Name” Module
• register_handler(ik_ivg11, ISR_Name);

− Maps ISR_Name’s Address Into Event Vector Table Register (EVT11)
− Sets IVG11 Bit in IMASK Register

31

17-31 a

Code Flow (Direct EVT Management Functions)Code Flow (Direct EVT Management Functions)

Refer to Application Note:
EE-192: Using C To Create Interrupt-Driven Systems On Blackfin Processors

Normal Code Execution

Interrupt
Latched and Enabled?

No

Yes

1. Save Registers
2. Execute ISR Code
3. Restore Registers
4. Execute RTI (Clears IPEND Bit)

ISR

EX_REENTRANT_HANDLER adds 2 cycles
to context save/restore because it saves RETI to
the stack, which enables nesting, and then
restores RETI at the end of the ISR.

32

17-32 a

Interrupt
nesting gets

enabled
HERE

33

17-33 a

Interrupt DispatcherInterrupt Dispatcher
• interrupt() function

Usage:
#include<sys\exception.h>
interrupt(ik_ivg11, ISR_Name);

• interrupt (ik_ivg11, ISR_Name);
− Places ISR_Name’s address into internal look-up table (__vector_table)
− Sets up implied call to register_handler (ik_ivg11, _despint);

• Maps location of interrupt dispatcher (_despint) into EVT11
• Sets IVG11 Bit In IMASK And Enables Interrupts

• Interrupt Dispatcher (_despint)
− Saves processor context by pushing the following registers to the stack:

• All Data (R0-R7), Pointer (P0-P5), and Accumulator (A0,A1) Registers
• All DAG (I0-I3, M0-M3, L0-L3, B0-B3) Registers
• All Loop (LB0-LB1, LT0-LT1, LC0-LC1) Registers
• Arithmetic Status (ASTAT) and Sequencer Status (SEQSTAT) Registers
• All Sequencer (RETS, RETI, RETX, RETN, RETE) Registers

− Pushing of RETI enables interrupt nesting!!
• System Configuration (SYSCFG) Register

34

17-34 a

Interrupt Dispatcher (cont.)Interrupt Dispatcher (cont.)

• Dispatcher (_despint) Also:
− Polls IPEND To Determine Which Bit Is Set (Checks Highest Priority

First)
− When A Set IPEND Bit Is Found

• Offset From Bit 0 Of IPEND Is Index Into Internal Look-Up Table
• Fetches ISR_Name’s Address From Look-Up Table
• Vectors To and Executes ISR_Name Module
• Restores Context
• Executes RTI (Clears IPEND Bit)

− If Multiple IPEND Bits Are Set, the Highest Priority Interrupt Is
Serviced and _despint Gets Called Again Upon Execution of RTI

• The process of saving/restoring context, determining the
interrupt source, and finding the vector to take as a result of the
event takes ~400-450 cycles, depending on which IPEND bit is
set

35

17-35 a

Code Flow (Dispatcher)Code Flow (Dispatcher)

Normal Code Execution

Interrupt
Latched and Enabled?

No

Yes

Dispatcher

1. Save Registers
2. Poll IPEND For Interrupt ID
3. Determine ISR From Look-Up Table
4. Jump To ISR
--------------------ISR Executes-------------------
5. Restore Registers
6. Perform RTI (Clears IPEND Bit)

ISR

36

17-36 a

Interrupt
nesting

gets
enabled
HERE

37

17-37 a

Assembly Language InterfaceAssembly Language Interface

• C-Callable Assembly Language Functions

• Assembly Language Statements Within a C Function (In-Line
Assembly)

• Associate C Variables with Assembly Language Symbols

38

17-38 a

CC--Callable Assembly Language FunctionsCallable Assembly Language Functions

• Several Issues Involved When Writing C-Callable Assembly
Language Functions
− Register Usage

• “Dedicated” Registers
• “Call Preserved” Registers
• “Scratch” Registers

− Argument Passing
• First Three Arguments Passed in R0, R1 and R2, respectively
• Arguments Four and Beyond Passed on Stack

− 4th Parameter Is Closest to SP at [FP+20], 5th at [FP+24], etc.
• Return Values of 32 Bits or Less Stored in R0

− Overflows To R1 for Return Values of 33 to 64 Bits
− Anything Over 64 Bits Is Allocated on Stack but Passed as Pointer in a

Hidden Argument in P0

39

17-39 a

C/C++ Compiler Register UsesC/C++ Compiler Register Uses
Dedicated RegistersDedicated Registers

Registers that C/C++ Compiler Reserves for its Own Use

REGISTER VALUE MODIFICATION RULES
L0 – L3 0 See Note below

SP Stack Pointer Stack Management Only, Restore

FP Frame Pointer Stack Management Only, Restore

L0-L3 Rules:

The L0-L3 registers define the lengths of the DAG’s circular buffers. The compiler makes use of the
DAG registers, both in linear mode and in circular buffering mode. The compiler assumes that the
Length registers are zero, both on entry to functions and on return from functions, and will ensure this
is the case when it generates calls or returns. Your application may modify the Length registers and
make use of circular buffers, but you must ensure that the Length registers are appropriately reset
when calling compiled functions, or returning to compiled functions. Interrupt handlers must store and
restore the Length registers, if making use of DAG registers.

40

17-40 a

C/C++ Compiler Register UsesC/C++ Compiler Register Uses
Call Preserved RegistersCall Preserved Registers

May be Used in an Assembly Function
Contents Should Be Saved and Restored
Values Assumed to be Preserved Across Function Calls

Call-Preserved Registers Are:

P3 - P5
R4 - R7

41

17-41 a

C/C++ Compiler Register UsesC/C++ Compiler Register Uses
Scratch RegistersScratch Registers

Contents DO NOT Need to Be Saved/Restored
Use Freely in Assembly Sub-Routines

42

17-42 a

CC--Callable Assembly Language FunctionsCallable Assembly Language Functions
• Macros in asm_sprt.h Provided to Make Function Calling

Easier
− Save/Restore Preserved Registers (pushs, pops)
− Restore Frame and Stack Pointers (exit)

pushs(x); // Save value in register onto stack

pushs(R5); -> [- -SP] = R5;

pops(x); // Read value off top of stack to a register
pops(R5); -> R5 = [SP++];

exit; // Restore stack/frame pointers and jump to return address
exit; -> P0 = [FP + 0x4];

JUMP (P0);

43

17-43 a

InIn--Line Assembly LanguageLine Assembly Language
• In-Line Assembly Is Accomplished Using the asm() Construct

Example:
asm(“RO = w[p0];”);

asm(“BITSET(R0,7);”);
asm(“ssync;”);

Note: Can Produce Less Efficient Compiled Code – Optimizer Might Re-Sequence
Instructions for Optimal Performance

44

17-44 a

Mixed C/Assembly Naming ConventionsMixed C/Assembly Naming Conventions

To name an
assembly symbol

that corresponds to
a C symbol, add an
underscore prefix
to the C symbol.

Declare as a
global variable in

C program and as
EXTERN in

assembly routine

To use an assembly
function or variable in your

C program, declare the
symbol with .GLOBAL

directive in assembly routine
and as EXTERN in the C

program

45

17-45 a

Example Example ----
Add 5 Numbers in an Assembly FunctionAdd 5 Numbers in an Assembly Function

• Example C Program That Calls an Assembly Function (add5)
− Adds 5 Integers Passed From C Calling Routine As Arguments

C code

extern int add5(int,int,int,int,int); /* Function is located in assembly module */
volatile int sum; /* Variable only used in assembly sub-routine*/

/* volatile keeps sum from being optimized out */
main()
{

int a=1; int b=2; int c=3; int d=4; int e=5; /* Initialize parameters */
int result=0; /* result and sum will have the same value */
result = add5(a,b,c,d,e); /* Call to the ADD5 function */
exit(0);

}

46

17-46 a

Assembly RoutineAssembly Routine
/* Assembly Routines with Parameters Example - _add5 */
/* int add5 (int a, int b, int c, int d, int e); */
/* This is an assembly language routine that will add 5 numbers */

#include <asm_sprt.h> /* Header file that defines the stack manipulation macros */

.section program;

.global _add5;

.extern _sum;

_add5:
r0=r0+r1; /* Add the first and second parameter */
r0=r0+r2; /* Add the third parameter */
r1=[FP+20]; /* Put the fourth parameter in R1 */
r0=r0+r1; /* Add the fourth parameter */
r1=[FP+24]; /* Put the fifth parameter in R1 */
r0=r0+r1; /* R0 is always the return value, variable “result” from C will get r0 value */
p0.h = _sum; /* we can also write directly to a globally defined variable as well */
p0.l =_sum; /* could be used if this function was implemented with no return type */
w[p0] = r0; /* Place the sum in the global variable (C is unaware of this assignment)*/
exit; /* Restores frame and stack pointers */

47

17-47 a

Optimizing C CodeOptimizing C Code

• Optimization Can Decrease Code Size or Lead to Faster Execution
− Can Be Controlled by Optimization Switch

• no switch optimization disabled
• -O optimization for speed enabled
• -Os optimization for size enables
• -ipa inter-procedural optimization enabled
• -Ov num enable speed vs size optimization (sliding scale)

(Automatically inlines small functions)

− Can Be Further Controlled In C Source Code Using Pragmas
• #pragma optimize_off - Disables Optimizer
• #pragma optimize_for_space - Decreases Code Size
• #pragma optimize_for_speed - Increases Performance
• #pragma optimize_as_cmd_line - Restore optimization per command line

options

• Other Optimization Ideas
− PGO (Profile guided Optimization) used with IPA
− Take Advantage of Existing Assembly Library Functions
− Write Time-Critical Routines in Assembly as a C-Callable Subroutine
− See App Note, “EE-149: Tuning C Source Code For The Blackfin DSP Compiler”

48

17-48 a

Profile Guided Optimization.Profile Guided Optimization.

• Program is run with training data.
• Compiled Simulation produces execution trace.

(Compiled simulation is hundreds of times faster than normal
simulation.)

• Re-compile program using execution trace as guidance.
• Compiler now knows result of all conditional operations.
• Compiler also knows where execution hot spots are.
• Better code
• Could also be used to control space/speed trade-off.
• Problem: If what matters to you is worst case, not majority

case, then choose training data appropriately.

49

17-49 a

Circular addressingCircular addressing

• -force-circbuf
The –force-circbuf switch treats array references of the form array[i%n]

as circular buffer operations. (where n is a power of 2)

• Explicit circular addressing of an array index:
long circindex(long index, long incr, unsigned long nitems)

• Explicit circular addressing on a pointer:
void * circptr(void *ptr, long incr, void *base, unsigned long buflen)

50

17-50 a

The Video OperationsThe Video Operations

• Align operations
• Packing operations
• Disaligned loads
• Unpacking
• Quad 8-bit add subtract
• Dual 16-bit Add/Clip
• Quad 8-bit average
• Accumulator extract with addition
• Subtract absolute accumulate

• Eg. bytesI2 = loadbytes((int *)ptrI); ptrI += 4;
bytesB2 = loadbytes((int *)ptrB); ptrB += 4;
srcI = compose_i64(bytesI1, bytesI2);
srcB = compose_i64(bytesB1, bytesB2);
saar(srcI, ptrI, srcB, ptrB, sum1, sum2, sum1, sum2);

51

17-51 a

Getting Started 80:20 Getting Started 80:20

Find out where program spends its time.
• 80 – 20 rule
• Measure: Intuition is notoriously bad here: instrument,

use profiler and cycle accurate simulator.
• Loops: Are always a good place to look.

Even a trivial operation can have a significant
cost, if it is done often enough.

52

17-52 a

VDSP Statistical ProfilerVDSP Statistical Profiler
• The profiler is very useful in C/C++ mode because it makes it easy to benchmark a

system module-by-module (I.e. C/C++ function).
• Assembly or optimised code appears as individual instructions.

• Linear Profiler is also available for the simulator.

53

17-53 a

Mixed Mode. Mixed Mode.
Statistical results at the instruction level.Statistical results at the instruction level.

Costly instructions are easy to spot.

<- Pipeline stalls

<- Transfer of control

