

Instructions for Tele-Training


Prior to the start of the class:

- Download the latest PSoC Designer software at <u>http://www.cypress.com/support/link.cfm?sd=4</u>.
- If you have a PSoC ICE, connect it to your computer.
- Visit <u>http://cypress.webex.com</u>, select a training session under the "Today" or "Upcoming" tab, and follow the instructions to register. After you register you'll receive an email with directions on how to join your session. (NOTE: IT IS BEST TO REGISTER AT LEAST ONE DAY IN ADVANCE.)
- If you have questions or need assistance, please call us toll free at 800.669.0557 (425.787.4400 for local calls or calls outside North America).

Connecting From Last Mile to First Mile."

Module 2: Designing with the PSoC

Discuss PSoC Data Sheet Resources Discuss PSoC[™] Routing Resources Discuss PSoC Design Considerations Complete an Example Project

PSoC Data Sheets

Three Level's of PSoC Data Sheets

- **1. Device Data Sheet**
- 2. Individual User Module Data Sheets
- 3. User-Defined PSoC Project Configuration Data Sheet

CY8C27X Device Data Sheet

The complete device data sheet for all part types is under Help >> Documentation inside PSoC Designer

DataSheet_CY8C27xxx.pdf

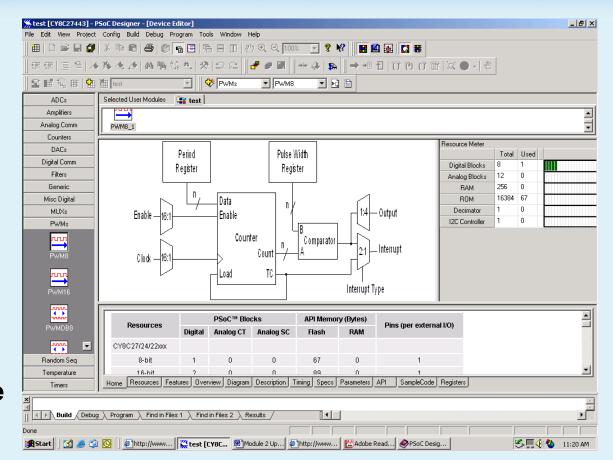
Also, at

http://www.cypress.com/cfuploads/img/products/CY8C7443-24PI.pdf

Soc Designer	
File Edit View Project Config Build Debug Program Tools Window	Help
₩ D 🛩 🛛 🕼 Χ Ϸ ϐ ୫ 🎯 🔒 🖻 등 Ε 🛛	Help Topics
卓 卓	Documentation
	Web Tech Support
雪 畦 气 悪 艶 油 参	Cypress MicroSystems Home Page
	About PSoC Designer
	Chip Viewer

http://www.cypressmicro.com/download/j	psocdatasheet.htm - Microsoft	: Internet Explorer		<u>_8</u> >
ile Edit View Favorites Tools Help				100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
= Back 🔹 🔿 🖌 🙆 🚽 🔯 Search 👔	Favorites 🍘 Media 🎯 🖪	• 🎒 🛛 • 🚯		
ldress 🗃 http://www.cypressmicro.com/downloa	d/psocdatasheet.htm			▼ 🖓 Go Links '
CYPRESS MICROSYSTEMS	Home	Buy Online	Order Samples	4 hour Technical Support
PSoC Device Family Data Sheet CY8C25122, CY8C26233, CY8C26443, CY8C26643	Download			
Note: The PSoC data sheet is a low-level description on the silicon. The data sheet is NOT a good starting point for potential users to investigate PSoC technology. Tele-training offered every Friday, PSoC Designer and the component data sheets (User Modules) are much better avenues to find out about the PSoC platformpdf file size 1.417 MB.				
SoC Mixed-Signal Array Data Sheet	Next generation. First, in	a succession of new PSoC	devicer Download	
SoC Mixed-Signal Array Data Sheet Y8C24123, CY8C24223, CY8C24423			Download	
SoC Mixed-Signal Array Data Sheet CY8C22113, CY8C22213 ADVANCED			Download	
PSoC Designer and Data Sheet CD			<u>Request</u>	

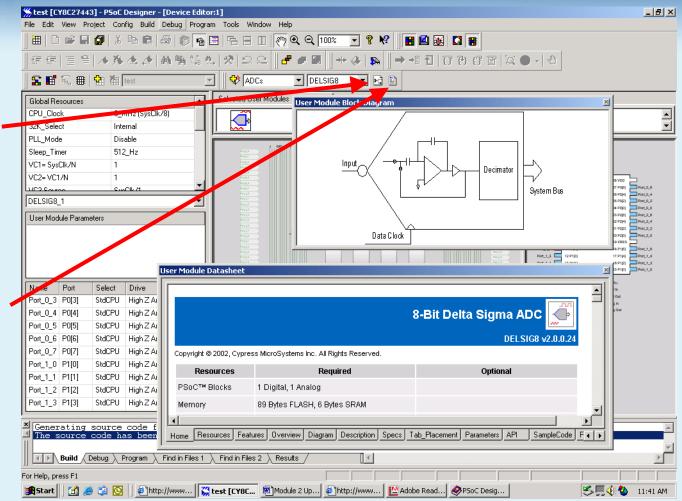
Individual User Module Data Sheets


Each User Module has its own data sheet contained within the PSoC Designer software

- Detailed specifications for the User Modules included in the data sheet
- Placement considerations, and example code

User Module Data Sheet Sections

- Resources
- Features
- Overview
- Diagram
- Description
- Timing
- Specs
- Placement
- Parameters
- API
- Sample Code
- Registers

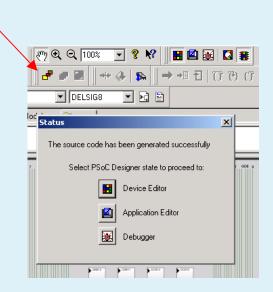

User Module View Options

UM Block Diagram

• Left-click

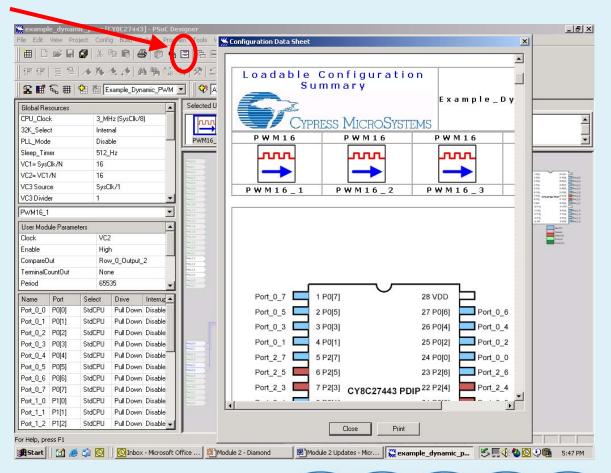
UM Data Sheet

• Left-click

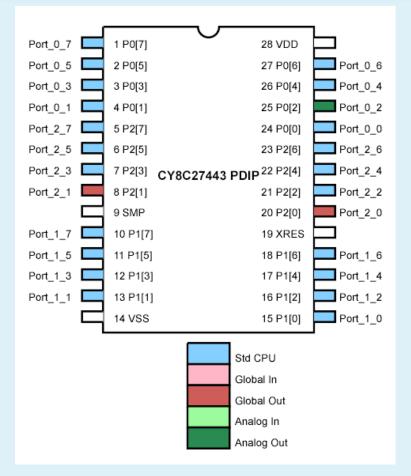


When the Generate Application icon is selected the User Defined Configuration Data Sheet is created

This datasheet saves hours of documentation time!

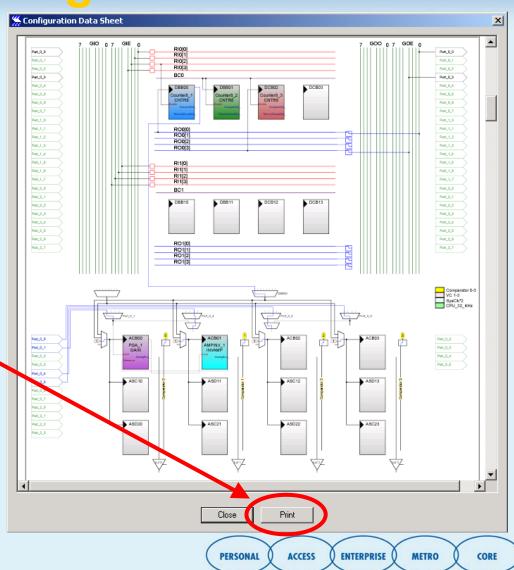

The next several slides show examples of the data sheet

The complete data sheet is <u>updated</u> as user configuration changes


Detailed project documentation

METRO

User defined pin-outs are color-coded and detailed in the data sheet.



PERSONAL ACCESS ENTERPRISE METRO CORE

Data sheet contains the placement and routing of User Modules

Placement View Window is Printable

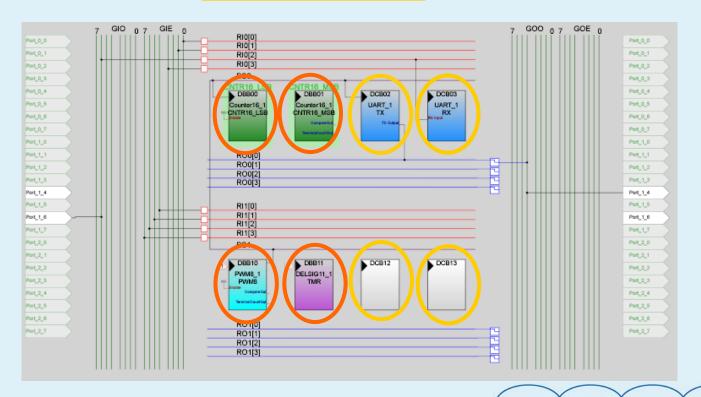
PSoC Routing Resources

<u>Digital System</u>

- Digital PSoC Blocks
 Global Digital Interconnect
 Row Digital Interconnect
 Bow Broadcast Nets
- Row Broadcast Nets

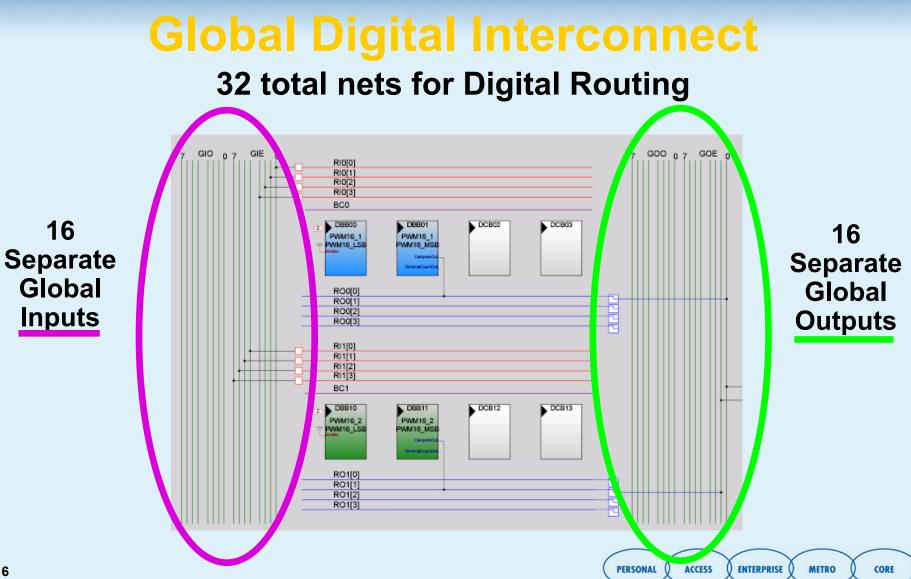
Analog System

Analog PSoC Blocks


- Configurable Clock Source
- Configurable Inputs
- Configurable Outputs

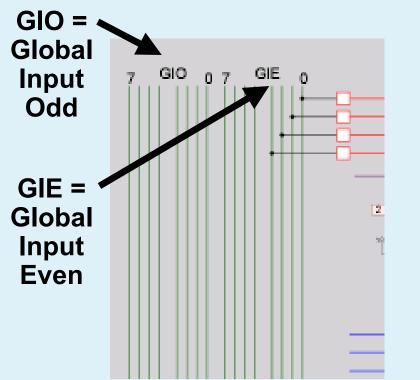
Digital Blocks

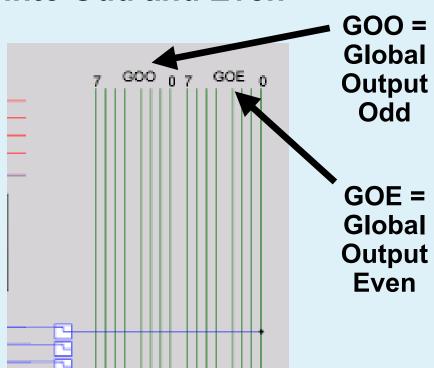
Two Rows of Digital Blocks Each Row Contains:


- Two Digital Basic Bocks (DBB)
- Two Digital Communication Blocks (DCB)

ENTERPRISE

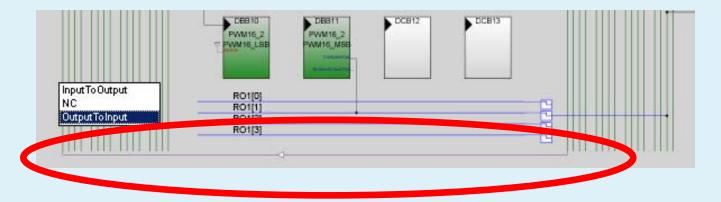
METRO

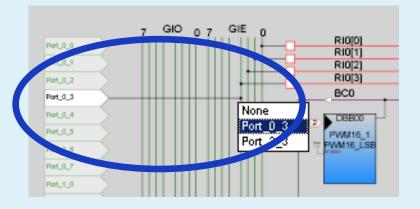




Global Digital Interconnect

Global nets are divided into Odd and Even





Global Digital Interconnect

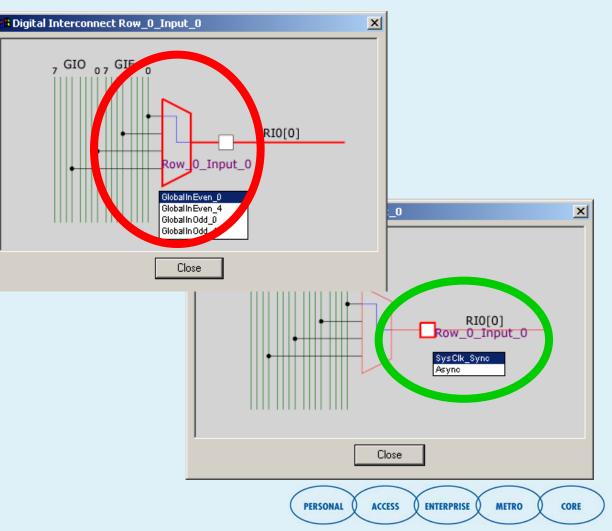
- Global nets can be used to:
 - Connect to other
 Global nets
 - Connect to Pins

Row Digital Interconnect

Each row of Digital Blocks has its own set of Row Interconnects

4 Input Rows and 4 Output Rows for the top row of digital blocks

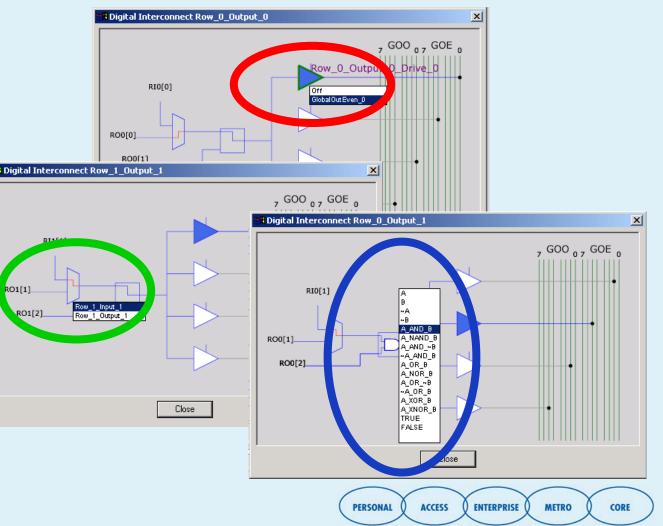
4 Input Rows and 4 Output Rows for the bottom row of digital blocks



Row Inputs For Digital Signals

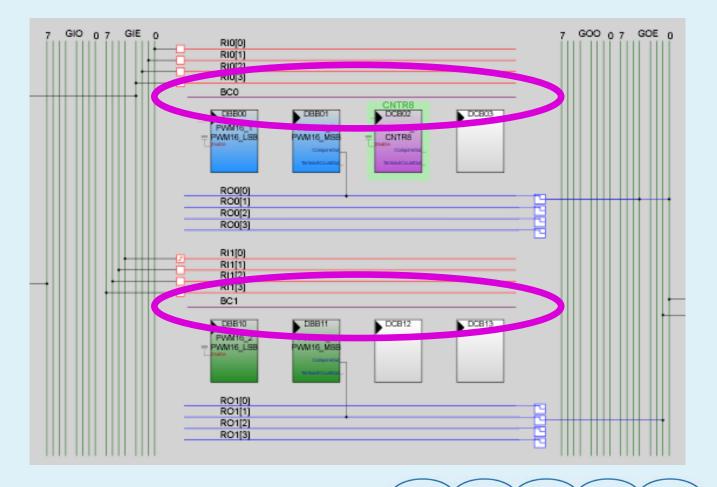
Row Inputs can be used for:

- Connection to Global Inputs
- Clock
 Synchronization

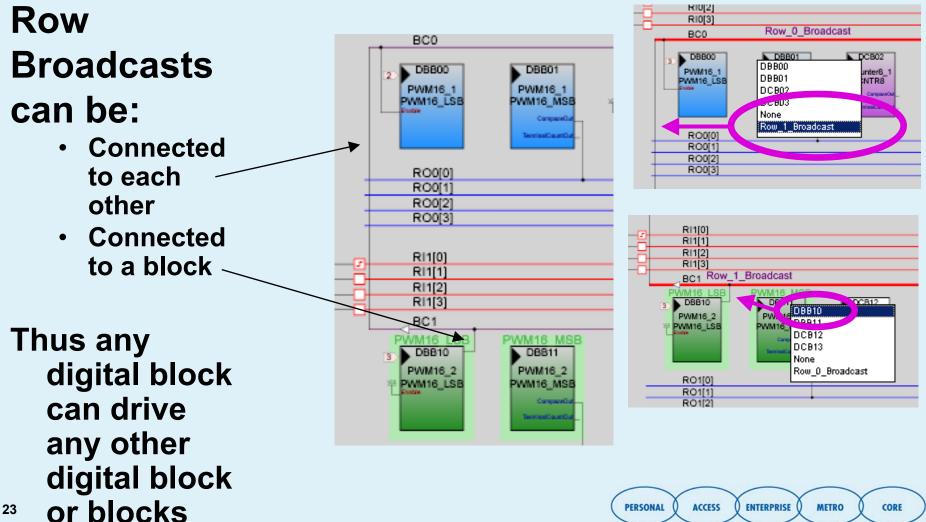


Row Outputs For Digital Signals

Row Outputs can be used to:

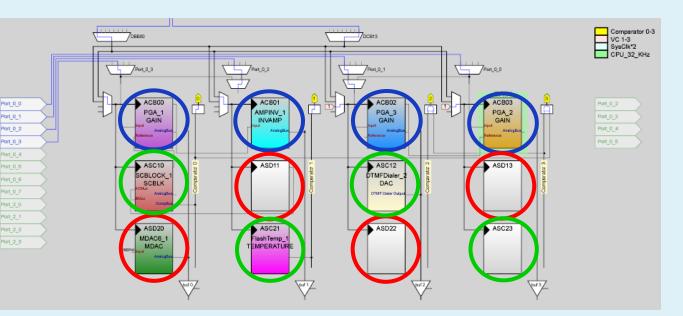

- Connect to global output nets
- Connect a Row Input to global output nets
- Perform
 logical
 operations
 on two Row
 nets.

Row Broadcast For Digital Signals


There are two Row Broadcast nets

CORE

Row Broadcast For Digital Signals

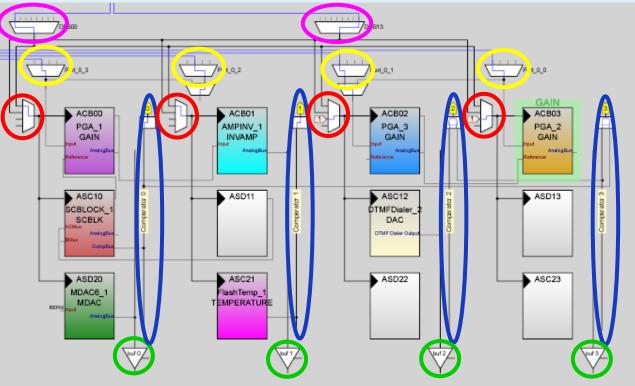

23

Analog Blocks Arranged in Columns

 Each column contains 3 types of Analog Blocks:
 ACB

ACB (Continuous Time)
ASC (Switched-Cap C)
ASD (Switched-Cap D)

Analog Columns Shared Resources Each Column


 Column Input MUX

shares:

- Column Clock Mux
- Output Bus and <u>Buffer</u>
- Comparator Bus

All Columns share:

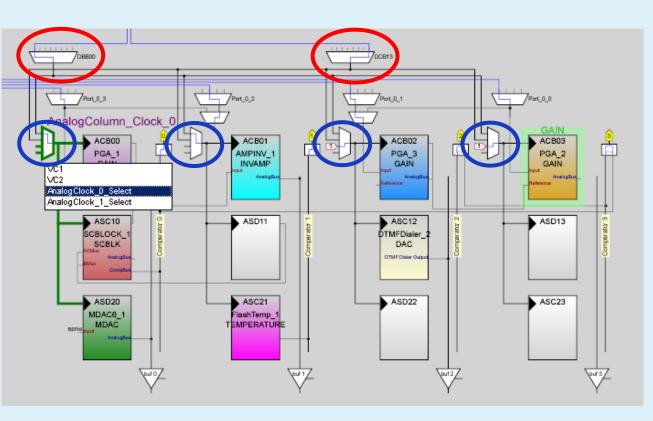
²⁵ Analog Clock Select

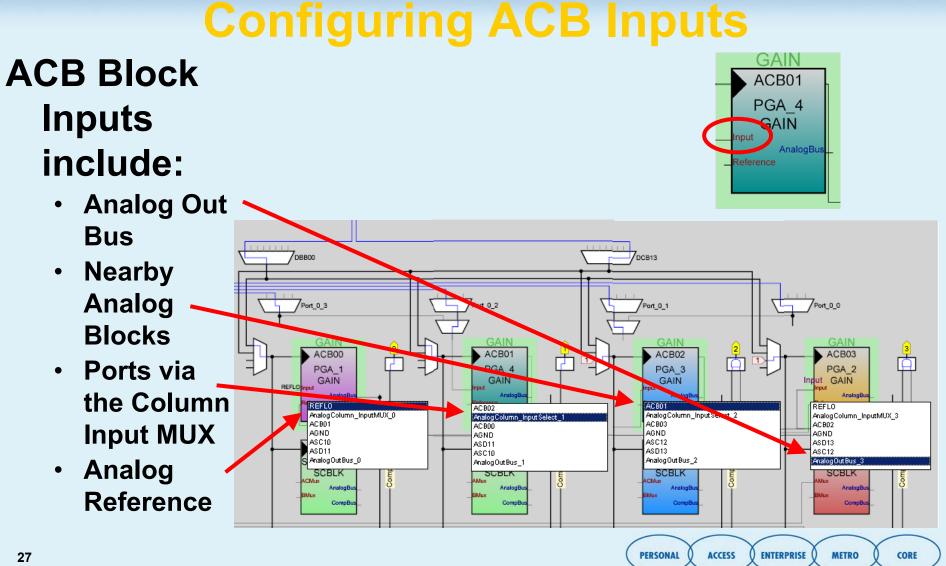
ACCESS

PERSONAL

ENTERPRISE

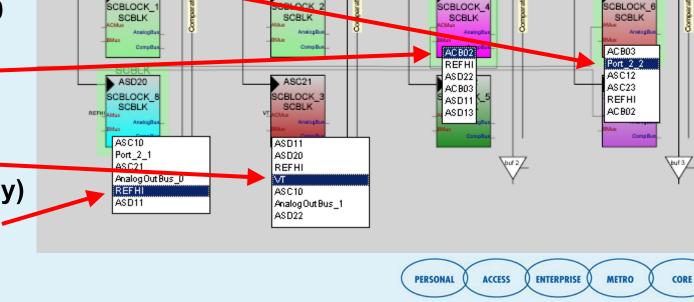
METRO


CORE


Configuring the Clock Source

Clock Select and Column MUXs:

- 4 Column Clock MUXs can connect to VC1, VC2, or connect to Clock Select MUXs
- 2 <u>Clock Select</u> MUXs can connect to any of the 8 digital blocks



Configuring ASC and ASD Inputs ASC and **ASD Block** Inputs ACB00 ACB01 ACB02 ACB03 include: \Box PGA 1 PGA_4 GAIN PGA 3 PGA 2 GAIN GAIN GAIN REFLO Analog Bu

ASC10

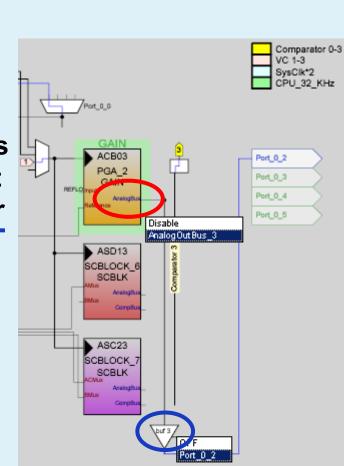
- Directly from Port 2 (Columns 0 and 3 only)
- Nearby Analog Blocks
- Vtemp (ASC21 only)
- Analog Reference

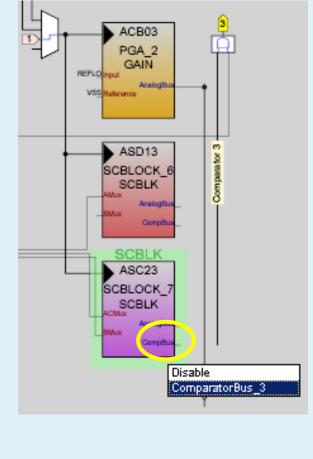
ASD11

e

ASD13

22


ASC12



Configuring Outputs

There are two output methods:

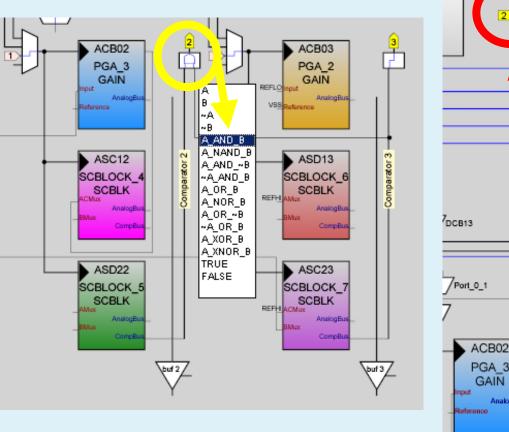
- Output to Ports via Analog Out Bus and Buffer
- Output to Comparator Bus

ENTERPRISE

METRO

CORE

PERSONAL


ACCESS

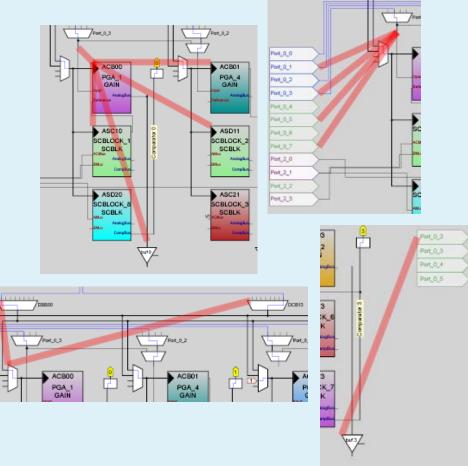
Comparator Bus

The Comparator Bus can:

- Perform logical operations on comparator outputs from two adjacent columns using the AnalogLUTs)
- Provide input to digital blocks

PERSONAL

DCB13 unter8_4



Making a Connection

Right Clicking on empty space in the Device Editor Window brings up the following

window.

✓ Preserve Aspect Ratio			
 Show Allowed Connections 			
 Show Tool Tips 			
Print			
Zoom In	Ctrl+Click		
Zoom Out	Shift+Ctrl+Click		
Original View			
✓ Higher Quality			
Find			
Find Again			
Change Background			
Help			
About SVG Viev	ver		

Checking "Show Allowed Connections" enables a feature that highlights all possible connections for any selected block, MUX, bus, or pin.

ENTERPRISE

METRO

PSoC design flow

Project Planning Determine the system requirements

Device Configuration

Choose the User Modules Place the User Modules Set Global Resources Set User Module Parameters Configure Internal Routing Define the Pinout for the device

Adding Application Code

Generate Application Code with the touch of a button!

Debugging

Review generated code

Covered in detail in Module 3

PERSONAL Q ACCESS Q ENTERPRISE

CORE

METRO

Project Planning

Desired Outcome:

Observe LEDs on Pup board counting down 256 steps at 1 step per 1/4 second; these steps correspond to the DAC's output voltage which will decrement from 3.8 V to 1.2 V.

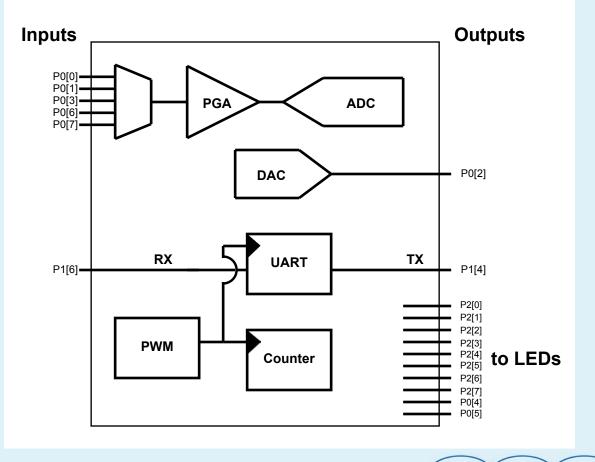
Create the project with:

- A single 8 bit DAC output
- A UART with 9600 baud rate
- A rate generator/PWM for the UART baud rate and to provide the input clock

PERSONAL

ACCESS

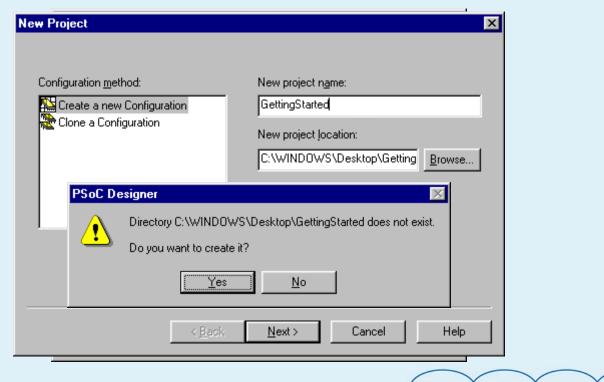
ENTERPRISE


METRO

CORE

- A 16 bit Counter for timing
- A programmable gain amplifier/input buffer
- An ADC with 5 inputs

Block Diagram


METRO

Let's Create Our Project

Create a New Project Named "GettingStarted"

Set destination directory Desktop/

ENTERPRISE

METRO

Let's Create Our Project

CORE

Select the Base Part

- View the drop-down menu and the catalog
- We'll use CY8C27443 (28-Pin Dual inline)

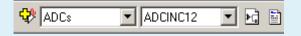
🕌 Select Base Part	×
Select display layout:	Create New Project
Part Number .	Select Base Fait Family: Part: CY8C27000 CY8C27443 (28-Pin Dual inline) Generate 'Main' file using:
 CY8C27000 CY8C27143 CY8C27243 CY8C27243 CY8C27443 	C al inline 256 16384 Image: Assembler ual inline 256 16384
© CY8C27543 © CY8C27543 © CY8C27643	1 ual inline 256 16384 256 16384 1 ual inline 256 16384
	Back Finish Cancel Help
	Select Part Image >>
	PERSONAL ACCESS ENTERPRISE METRO

Let's Create Our Project

Select Project's Language

- Assembly and C (only if enabled) Languages available
- We'll choose assembly

Create New Project		X
CSelect Base Part-		7
Family:	Part:	
CY8C27000	CY8C27443 (28-Pin Dual inline) View Catalog	
	Generate 'Main' file using:	
	C c	
	 Assembler 	
	< Back Finish Cancel Help	
	< Back Finish Cancel Help	


Choosing User Modules

Resource Meter		
	Total	Used
Digital Blocks	8	0
Analog Blocks	12	0
BAM	256	0
ROM	16384	0
Decimator	1	0
I2C Controller	1	0

		ADCINC12 v5.0
opyright © 2002-2003. Cypress MicroSystems	Inc. All Rights Reserved.	
Y8C27/24/22xxx Data S	heet	
Resources	Required	Optional
PSoC™ Blocks 2 Digital, 1 Ana	log	
femory 209 Bytes Flas	h, 6 Bytes SRAM	
Pins None		1 per External Clock
nterrupt Overhead 43 (min) 249 (r 47 CPU Cycles	nax) CPU Cycles (average)	
)ther Modules		Timer for Particular Sample Rate

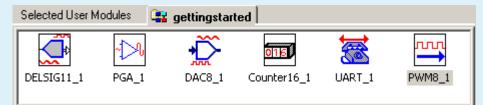
Home Resources Features Overview Diagram Description Specs Placement Parameters API SampleCode Registers

Explore the "Selection View" of Device Editor

- User Module Catalog
- Resource
 Meter
- User Module Data Sheet Viewer
- Adding, Deleting, Renaming User Module Instances

METRO

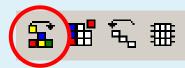
PERSONAL () ACCESS



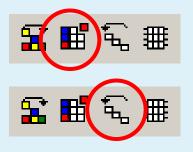
Choosing User Modules

We will select 6 User Modules for this project Choose User Modules from the pull-down menu, left click on select button to add a chosen User Module

- DELSIG11: A Delta-Sigma ADC with 11 bits of resolution (select DS111)
- PGA_A: A programmable gain amp/input buffer
- DAC8: A single output DAC with 8 bits of resolution
- Counter16: A counter for clocking
- UART
- PWM8: An 8-bit Pulse Width Modulator



Placing User Modules:



Explore the "Interconnect View" of the Device Editor

Next Position button

- Selecting the "Active" UM block
- Place Here button
- Unplace button

Placing User Modules: Guidlines

There is a great deal of flexibility

- Try-out the modules individually first and see how flexible they are, then undo placements
- PSoC Designer will only allow the modules to be placed where the chip can support them

PSoC Designer will not prevent a placement that may create a conflict for resources

Detailed User Module data sheets describe resource support requirements

Analog Block Columns share Clock settings

 Place User Modules with the same Clock setting in the same column

Placing User Modules: Guidlines

Some User Modules only work in Digital Communication blocks, other User Modules will work in either Digital Basic blocks or Digital Communication Blocks

- Place Communication block User Modules first to ensure available placement
- The Broadcast Bus allows any one digital block to drive the clock of any other digital block or blocks
 - Clock syncing between digital blocks does not impact user module placement (unlike analog blocks)

Place the User Modules

UART – Blocks DCB02/DCB03

- one block each for RX, TX
- The UART requires digital communication blocks

Counter 16 – Blocks DBB00/DBB01

 The Counter can be placed in either basic or communication blocks

DELSIG11 – Block ASC12 and DBB11

- 5 analog sources middle columns connect to all analog inputs
- Use a basic (DBA) block rather than communication (DCA)

Place the User Modules

PGA – CT Block ACB02

In column with the Delta Sigma – same clock

DAC8 – Blocks ASD13/ASC23

- Connect output to the interface pin on the PSoC Pup demo board
- Better to keep blocks in a single column to maximize resources

PWM8 – Digital Block DBB10

 Use a basic (DBA) block rather than communication (DCA) block

User Module Requirement Analysis

UART

- UART datasheet specifies input clock as 8 times baud rate
- 8 times 9600 is 76,800KHz
- Get baud rate clock from PWM8

PWM8

- Generate a clock for UART at 9600 baud
- DELSIG11
 - Choose data rate and set the clock
 - Connect to PGA for inputs

DAC8

- Enable the connection to the output buffer
- Counter16
 - Get an interrupt every 1/4 second

PGA

Set to unity or adjust gain for inputs to maximize ADC range

CPU_Clock: Set to 12MHz 32K Select: Set to Internal

- Not using an external crystal
- PLL_MODE: Set to Disable
 - PLL can only be enabled when 32K_Select is External (crystal)
- Sleep_Timer: Set to the default value of 512_Hz

VC1= SysClk/N: Set to 4

- This signal is used for the DELSIG11, divides 24MHz by 4 (6MHz)
- VC2= VC1/N: Set to 12

This defines the DAC8 clock, divides VC1 by 12 (500Khz)
 VC3 Source: SysClk/1 (Default)
 VC3 Divider: 1 (Default)
 SysClk Source: Internal 24_MHz
 SysClk *2 Disable: No (Default)

Analog Power: Set to SC On/Ref Low

 This is required to power up any of the analog blocks, depending on the number of analog functions, a Ref Med or Ref High may be required (and will increase power consumption)

Ref Mux: Set to (Vdd/2) ±Bandgap (the default)

AGndBypass: Disabled (Default)

Op-Amp Bias: Set to Low (the default)

- This is not recommended as anything but low
- A_Buff_Power: Set to Low (default)
 - This selects the power level of the analog output buffer
 - There is a tradeoff between drive output power and power consumption, Low is adequate for most projects

SwitchModePump: Set to Off Trip Voltage [LVD (SMP)]: 4.64V (5.00V) (Default) LVD ThrottleBack: Disable (Default) Supply Voltage: Set to 5.0V Watchdog Enable: Disable (Default)

DELSIG11 (Select in the left center drop-down box)

- TMR Clock set to VC1 (6MHz from global resources)
- Input set to ACB02
- Leave other parameters as defaults

(read UM datasheet for more details)

PGA

- Gain: Set to unity or adjust gain for inputs to maximize ADC range by setting Gain to 1.000
- Input: Connect to input muxes by setting Input to AnalogColumn_InputSelect_ 2
- Reference: AGND (Analog Ground)
- AnalogBus: AnalogOutBus_2

DAC8

- AnalogBus: Set to AnalogOutBus_3
- Leave other parameters as defaults

(read UM datasheet for more details why)

PWM8

Generate a clock for UART at 9600 baud

- Clock: VC1 (6MHz)
- Enable: High (to keep the PWM always running)
- CompareOut: None
- TerminalCountOut: None
- Period to 77 (76923/78 = 9615, real close to 9600)
 - 78 1 = 77 because PWM counts down through 0
- PulseWidth: 38 (77/2, creates a square wave)
- Compare Type: Less than or Equal
- Interrupt Type: Terminal Count
- ClockSync: Sync to SysClk
- Invert Enable: Normal

UART

Get baud rate clock from PWM8 by connecting to broadcast

- (See slide 55)
- Choose global buses for TX/RX (a bit of freedom, you can change your mind as the pinout is defined)
 - Set RX Input to Row_0_Input_2
 - Connect Row_0_Input_2 to GlobalInOdd_6 (see slide 56)
 - Set TX Output to Row_0_Output_0
 - Connect Row_0_Output_0 to GlobalOutOdd_4 (slide 57)
 - TX Interrupt Mode: TXRegEmpty
 - Leave other parameters as defaults

Counter 16

Create an interrupt every 1/4 second

- Clock: Row_0_Broadcast (PWM8 output)
- Enable: High to allow Counter16 to always run
- CompareOut: None
- TerminalCountOut: None
- Period: 19230 (19231 1 as describe in datasheet)
- CompareValue: 0 (will count down from 19230)
- CompareType: Compare Less Than Or Equal
- InterruptType: Terminal Count
- ClockSync: Sync to SysClk
- Invert Enable: Normal

Internal Routing

Interconnect Blocks to Resources

ACB02 PGA_1 GAIN

PERSONAL

ACCESS

ENTERPRISE

METRO

CORE

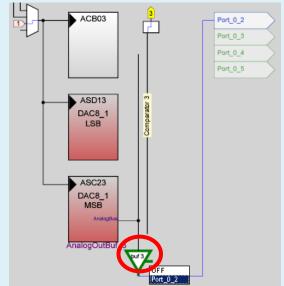
What interconnection possibilities are there?

Input pins

ACB00

- Output pins
- Clocks

Connect DAC8 to Analog Buffer


- Go to the bottom right corner "buf3"
- Select Port_0_2
- Output is already enabled from UM parameter definitions

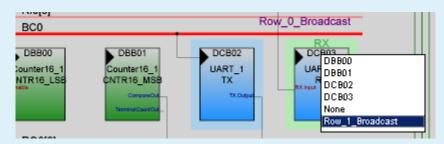
Check Set Up for all Clocks

• VC1 for AnalogColumn_Clock 0, 1, and 2

ACB01

VC2 for AnalogColumn_Clock_3

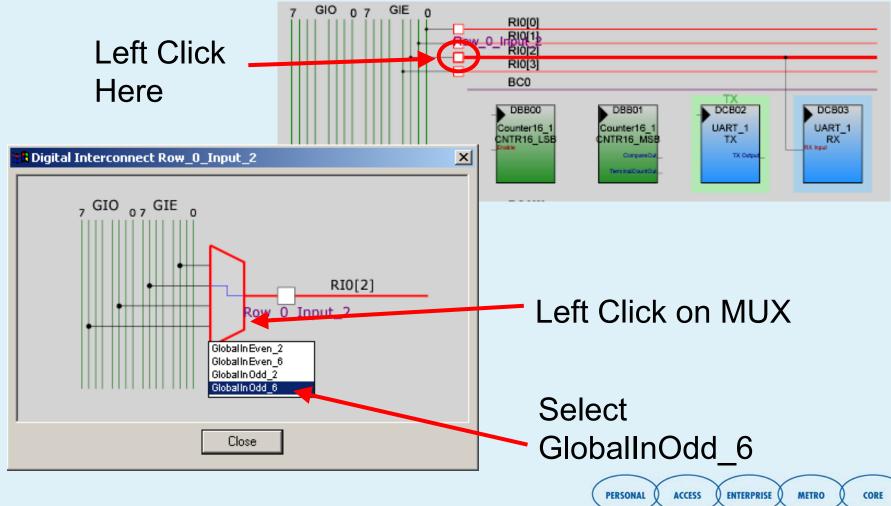
Routing PWM clock to UART


Connecting to Broadcast

First, Left Click BC1 and Select DBB10

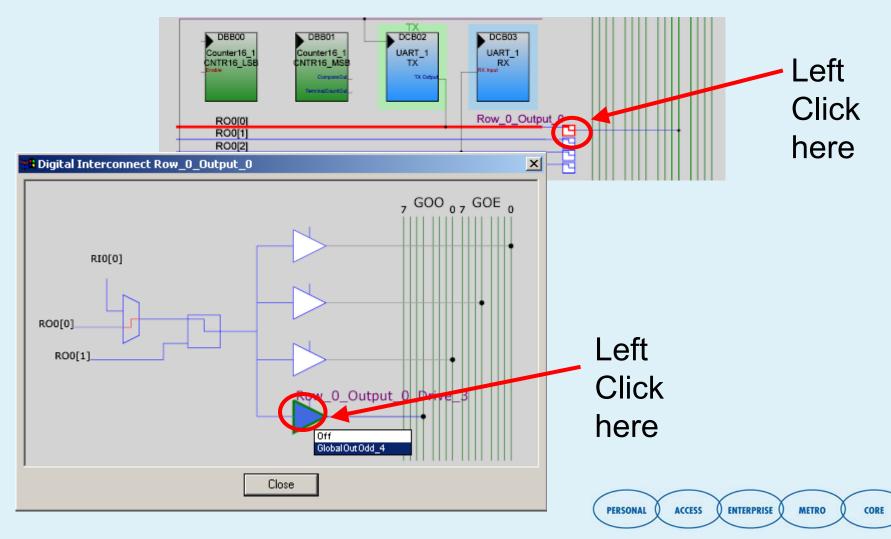
Second, Left Click on BC0 and Select Row_1_Broadcast

DBB00 DBB01 Clock IX DCB03 Gounter16_1 Conner16_1 UART_1 UART_1 UART_1 Commentar RX SysClk*2 VC1 VC2 VC3 CPU_32_KHz Row_0_Output_0 Row_0_Output_1 RO0[0] Row_0_Output_1 Row_0_Output_1 RO0[2] Row_0_Output_2 Row_0_Output_3 Ri1[0] Ri11[0] Row_0_Input_1 R11[1] Row_0_Input_3 Row_0_Input_3 Ri11[2] Risable Isable
, DUI

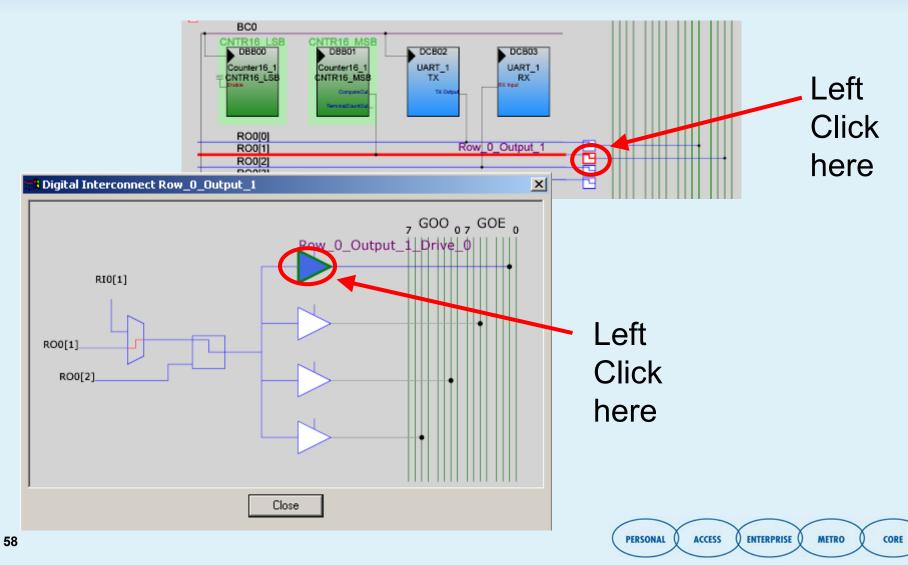


Third, Left Click on DCB02 Clock input and Select Row_0_Broadcast

CORE


Connect Row_0_Input_2 to GlobalInOdd_6

Routing UART TX to Global Out


Connect Row_0_Output_0 to GlobalOutOdd_4

Routing Counter to Global Out

Connect Row_0_Output_1 to GlobalOutEven_1

Define the Pin-out

What pins need to be defined?

- UM Inputs
- UM Outputs
- General Purpose IO

What pin-out options are there?

Permanent versus test/debug

What happens as pins are defined? Pin-out our project

- LEDs
- SignalOut
- Power and Ground

PIN Out details (to match Pup Board)

Port 0: Define the Analog Inputs (to Mux) • P0[0], P0[1], P0[3], P0[6], P0[7]

	Name	Port	Select	Drive	Interrupt	
 ▶	Port_0_0	P0[0]	AnalogInput	High Z An	DisableInt	
→	Port_0_1	P0[1]	AnalogInput	High Z An	DisableInt	
	AnalogOut	P0[2]	AnalogOutBu	High Z An	DisableInt	
→	Port_0_3	P0[3]	AnalogInput	High Z An	DisableInt	
	Port_0_4	P0[4]	StdCPU	High Z An	DisableInt	
	Port_0_5	P0[5]	StdCPU	High Z An	DisableInt	
→	Port_0_6	P0[6]	AnalogInput	High Z An	DisableInt	
→	Port_0_7	P0[7]	AnalogInput	High Z An	DisableInt	
	Port_1_0	P1[0]	StdCPU	High Z An	DisableInt	
	Port_1_1	P1[1]	StdCPU	High Z An	DisableInt	
	Port_1_2	P1[2]	StdCPU	High Z An	DisableInt	•

Analog Output (Level is displayed to LEDs)

Port 0 [2] – AnalogOutBuf3

PIN Out details (to match Pup Board)

LED Display

Port 2 [0..7] and Port 0[4], Port 0[5] set to StdCPU/Strong

Name	Port	Select	Drive	Interrupt	
Port_1_6	P1[6]	GlobalInOdd	High Z	DisableInt	
Port_1_7	P1[7]	StdCPU	High Z An	DisableInt	
Port_2_0	P2[0]	StdCPU	Strong	DisableInt	
Port_2_1	P2[1]	StdCPU	Strong	DisableInt	
Port_2_2	P2[2]	StdCPU	Strong	DisableInt	
Port_2_3	P2[3]	StdCPU	Strong	DisableInt	
Port_2_4	P2[4]	StdCPU	Strong	DisableInt	
Port_2_5	P2[5]	StdCPU	Strong	DisableInt	
Port_2_6	P2[6]	StdCPU	Strong	DisableInt	
Port_2_7	P2[7]	StdCPU	Strong	DisableInt	
					•

Global Input: UART RX

Port 1 [6] – UART Rx (GlobalInOdd_6)

PERSONAL

ACCESS

Global Output: UART TX

Port 1 [4] – UART Tx (GlobalOutOdd_4 (strong))

— Port_1_4

METRO

CORE

ENTERPRISE

Design Rule Checker

💃 gettingstarted [CY8C27443] - PSoC Designer - [Device Editor]

File Edit View Project Config Build Debug Program Tools Window Help Options... Design Rule Design Rule Checker severity levels

Second, run the Design Rule Checker

	Options				
	Design Ru	le Checker			
Dptions					2
Builder Com Editor	piler Toolbars	Debugger Des	De ^r ign Rule I	vice Editor Checker	
Specify lowest rule sev	erity level to	o execute:			
Top level	5	-			
Base Device	5				
Part	5				
User Module	5				
1				Cancel	_
					_

% gettingstarted [CY8C27443] - PSoC Designer - [Device Editor]										
File Edit View Project Config Build Debug Program Tools Window Help										
	Options									
								Des	ign Rule C	hecker

PERSONAL ACCESS ENTERPRISE METRO CORE

Design Rule Checker

Rules Include:

- The CPU clock should not be set to 24MHz with 3.3V supply voltage
- The Drive should be set to High Z Analog for an Analog Input
- The ICE can only supply 5V, not 3.3V
- No placed User Modules should have undefined parameters
- The SC Blocks should most likely be powered on
- All User Modules should be placed
- Port_1_0 and Port_1_1 should be set to High Z for an external crystal
- Clock and ClockSync parameters of any placed User Modules must conform to the guidelines set in 17.1.2 of the CY8C27X data sheet

Configuration Complete!

Time to Save your project (Go to File→Save Project)

Time to Generate Application

- All settings combined by PSoC Designer to create the boot-up code to configure the registers at reset
- ISRs are created (but not updated)
- APIs are created or updated
- Device Data Sheet generated

You must do this whenever changes are made to the configuration

But be careful with Interrupt changes

Cut and Paste code into Application

- The file "Code_for_Mod2.txt" contains ASM code to complete the project
- Insert as directed into main.asm and Counter16_1int.asm
- Note: The file contains both code excerpts.

main.asm should contain the following

include "m8c.inc" ;include m8c specific declarations and macros include "DAC8_1.inc"

export _main export outputV

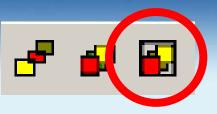
area bss (RAM) outputV: blk 1 voltage ;inform assembler of variables to follow ;declare global variable to hold output

area text (ROM, REL) follow ;inform assembler of code to

PERSONAL ACCESS ENTERPRISE METRO CORE

main: M8C EnableGInt ;macro to enable global interrupts m8c.inc file **PWM8_1_Start** ;start **PWM8_1** to provide clock call call Counter16_1_EnableInt ;enable Counter 16 interrupt call Counter16 1 Start ; start Counter 16 A,DAC8_1_LOWPOWER ;specify low power for mov DAC call DAC8 1 Start ;starts DAC operation [outputV],255 :setup variable for mov maximum voltage value mainloop: mainloop jmp ACCESS ENTERPRISE PERSONAL METRO ret

CORE


Counter16 1int.asm should contain the following:

```
_Counter16_1_ISR:
```

```
pushA
                :save A on stack
   dec
                [outputV]
                                ;Decrement voltage variable and
  place on port 2
               A.[outputV]
   mov
                reg[PRT2DR],A
   mov
  call DAC8_1_WriteStall
                                ;write new voltage variable to DAC8
  ;and wait for optimum write time
                                ; if voltage variable reaches 0 reset
                A,[outputV]
   mov
  to maximum value
                branch1
  inz
                [outputV],254
   mov
branch1:
                Α
                        :restore A from stack
   pop
reti
```


Build Project

- Assembles code, links and locates
- Can individually assemble files as well
- Explore the Application Editor Features
 - Project file management (view/add/delete files)
 - Finding compilation errors

Code Reduction

Code Reduction:

Enable Code Compression

Optimization for C compiler

Enable Elimination of unused User Modules (area) APIs

 linker will only pull in functions that are actually called while unused subroutines are ignored

🎇 g	etting	jstarte	ed [CY8C	27443]	- PSoC	Design	er - [Dev	ice Edil	tor]	
File	Edit	View	Project	Config	Build	Debug	Program	Tools	Window	Help
			Remo	o Project ve from I ce Projec	Project	•				
			Settin		file					
		Р	roject Se	ettings						×
			Compiler	Device	e E ditor	Linker	Program	mer De	ebugger	
			Macro	defines:						
			, Macro (undefine:	S					
			• Ena	able Imag	jeCraft					
							peed 🔽	Enable	e MAC	
				able Code						
			Ena	able Elimi	nation c	of unused	l UserModu	iles (are	a) APIs	
							OK		Cancel	

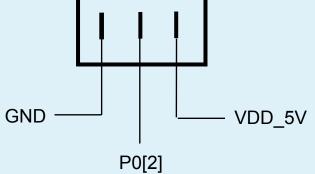
Execute Project Within Debugger

Switch to the Debugger – What's Different?

Looks like the Application Editor, but files are read-only

Connect to the ICE

Download the project to ICE



Run It!

The DAC outputs to P0[2]. The Pup board has three pins that are as follows:

Our project was set up to output the voltage to P0[2]. So if you attach the multi-meter to the middle pin and the left pin on the Pub board, you will be able to watch the voltage decrement from 3.8 to 1.2 Volts as the LEDs count down the 256 steps.

The LEDs should show the value stepping down, corresponding to the level which is being generated by the DAC8.

Thank You!

