
Processor Expert
CodeWarrior Plug-in for Freescale

User Manual

version 2.82
2005 UNIS, spol. s r.o. ALL RIGHTS RESERVED

All brands or trademarks are property of their respective holders.

- 1 -



- 2 -

CONTENTS
1. Introduction 5
1.1. Processor Expert Plug-in Overview 5
1.2. Benefits of Embedded Beans and Processor Expert Technology 7
1.3. Features 9
1.4. Concepts 11
1.5. Terms and Definitions Used in Processor Expert 14

2. User Interface 16
2.1. Main Menu 17

2.1.1. Processor Expert Options 20
2.1.2. Tools Setup 21

2.1.2.1. Tools Setup Macros 23
2.2. Help and Manuals 25
2.3. Project Panel 26

2.3.1. Configurations Pop-up Menus 30
2.3.2. Configurations Editor 31
2.3.3. CPUs Pop-up Menus 32
2.3.4. Beans Pop-up Menus 33
2.3.5. User and Generated Modules Pop-up Menus 35
2.3.6. Documentations Pop-up Menu 36
2.3.7. PESL Folder Pop-up Menus 36

2.4. Bean Selector 37
2.5. Inspector 39

2.5.1. Inspector Items 41
2.5.2. Items Visibility 43
2.5.3. Bean Inspector 44

2.5.3.1. Dialog Box for Timing Settings 45
2.5.3.1.1. Syntax for the Setting of Timing Features in the Bean Inspector 47

2.5.3.2. Defaut Values for Properties 48
2.5.3.3. Version Specific Items 48

2.5.4. Configuration Inspector 49
2.6. Error Window 50
2.7. Target CPU Window 51
2.8. CPU Timing Model 55
2.9. Resource Meter 56
2.10. Memory Map Window 57
2.11. CPU Types Overview 59
2.12. CPU Parameters Overview 59
2.13. List of Installed Beans with Additional Information 61
2.14. Peripheral Initialization 63
2.15. Peripherals Usage 65
2.16. File Editor 66
2.17. PDF Search 72

2.17.1. Regular Expressions 74

3. Application Design 80
3.1. Quick Start in Processor Expert 80
3.2. Embedded Beans 81

3.2.1. Bean Categories 83
3.3. CPU Beans 84

3.3.1. CPU Properties Overview 86
3.3.2. Speed Modes Support 86



- 3 -

3.3.3. Changing Names of Peripheral Devices 87
3.4. Predefined Types, Macros and Constants 88
3.5. Typical Usage of the Bean in the User Code 91

3.5.1. Typical Usage of Peripheral Initialization Beans 92
3.6. Reset Scenario With Processor Expert 94
3.7. Interrupts and Events 95

3.7.1. Interrupt Vector Table 96
3.7.2. Processor Expert Priority System 97

3.8. Implementation Details 98
3.8.1. Version Specific Information for 56800/E 98
3.8.2. Version Specific Information for HC(S)08 100

3.8.2.1. HC08 Timer Beans Implementation Details 102
3.8.2.2. Debugging on HC08 Using MON8 108

3.8.3. Version Specific Information for HCS12 109
3.9. Configurations 110
3.10. Design Time Checking: Consequences and Benefits 111
3.11. Creating User Bean Templates 113
3.12. Signal Names 116
3.13. Bean Inheritance and Bean Sharing 117
3.14. Pin Sharing 119
3.15. Code Generation 120

3.15.1. Linker Dialog 122
3.15.2. Tracking Changes in Generated Code 123

3.16. Code Optimizations 125
3.17. Embedded Bean Optimizations 126

3.17.1. General Port I/O Optimizations 126
3.17.2. Timer Beans Optimizations 126
3.17.3. Code Size Optimization of Communication Beans 127

3.18. User Changes in Generated Code 128
3.19. Low-level Access to Peripherals 130

3.19.1. Processor Expert System Library 131
3.19.2. Direct Access to Peripheral Registers 131

3.20. Import 56800/E Project From Quick-Start 133

4. Processor Expert Tutorials 134
4.1. Tutorial Project 1 for Freescale HC08 Microcontrollers 134
4.2. Tutorial Project 2 for Freescale HC08 Microcontrollers 134

4.2.1. Tutorial for Freescale HC08 Project 2 Step 1 135
4.2.2. Tutorial for Freescale HC08 Project 2 Step 2 137
4.2.3. Tutorial for Freescale HC08 Project 2 Step 3 142
4.2.4. Tutorial for Freescale HC08 Project 2 Step 4 143

4.3. Tutorial Project 1 for Freescale HCS12 Microcontrollers 144
4.4. Tutorial Project 2 for Freescale HCS12 Microcontrollers 144

4.4.1. Tutorial for Freescale HCS12 Project 2 Step 1 145
4.4.2. Tutorial for Freescale HCS12 Project 2 Step 2 147
4.4.3. Tutorial for Freescale HCS12 Project 2 Step 3 152
4.4.4. Tutorial for Freescale HCS12 Project 2 Step 4 153

4.5. Tutorial Project 1 for Freescale 56800/E Microcontrollers 155
4.6. Tutorial Project 2 for Freescale 56800 Microcontroller family 155

4.6.1. Tutorial Freescale 56800 Project 2 Step 1 156
4.6.2. Tutorial Freescale 56800 Project 2 Step 2 157
4.6.3. Tutorial Freescale 56800 Project 2 Step 3 161
4.6.4. Tutorial Freescale 56800 Project 2 Step 4 163

4.7. Tutorial Project 3 for Freescale 568000 Microcontroller family 165
4.7.1. Listing of the File events.c 170



- 4 -

Processor Expert User's manual

4.7.2. Listing of the file LEDcontrol.c 173

5. Bean Wizard Description 178



1. Introduction
Both hardware and software design have progressed so much with the ever-advancing new technologies

emerging everyday, but their interrelationships and interdependence have been mostly neglected. On one hand,

we often see a good new hardware architecture but the software design is too expensive for such an architecture.

On the other hand, the computerization of nearly all mechanical gadgets all over the modern world leads to the

use of embedded computer systems. In situations where expense is a consideration, embedded computer systems

with efficient software can significantly reduce the overall design cost.

Processor Expert Code Warrior plug-in is designed for rapid application development of embedded

applications for a wide range of microcontrollers and microprocessor systems.

Processor Expert Main features

The• application is created from components called Embedded Beans.

Embedded• Beans encapsulate functionality of basic elements of embedded systems like CPU core, CPU

on-chip peripherals, FPGA, standalone peripherals, virtual devices, and pure software algorithms and change

these facilities to properties, methods and events (like objects in OOP).

Processor• Expert suggests, connects and generates the drivers for an embedded system hardware, peripherals

or used algorithms. This allows the user to concentrate on the creative part of the whole design process.

Processor• Expert allows true top-down style of application design - the user starts the design directly by

defining the application behavior instead of spending days just trying to make the chip work.

Processor• Expert works with an extensible beans library of supported microprocessors, peripherals and

virtual devices.

Processor• Expert Peripheral Initialization beans generate effective initialization code for all on-chip devices

and support all their features.

Processor• Expert allows to easily examine the details of the architecture and the relationship between the

Embedded Bean setup and CPU control registers initialization.

The• user can create his/her own beans using the Bean Wizard external tool. See chapter 5 Bean Wizard

Description for details.

1.1. Processor Expert Plug-in Overview

The Processor Expert was originally developed as a stand-alone product. Now, to provide a more efficient and

comfortable development environment, we integrated it as a plug-in to the CodeWarrior.

The CodeWarrior IDE menu contains a new menu item named Processor Expert. The Processor Expert plug-in

generates code from the Embedded Beans and CodeWarrior manages the project files and the compilation and

debugging processes.

- 5 -

Processor Expert User's manual Introduction



Figure 1.1 - CodeWarrior IDE with Processor Expert plug-in active

How to create a new project

See the chapter 4  Processor Expert Tutorials or 3.1  Quick Start in Processor Expert for step-by-step instructions

on how to start a new Processor Expert project.

Compiler and Linker settings

To set the compiler and linker options, select the command {TargetName} Settings in the "Edit" menu in the

Code Warrior main menu. You can find linker and compiler specific settings in the "Target" and "Linker"

folders. The command {TargetName} Settings is not available when no project is open.

Where to find source code and user modules

Processor Expert generates all drivers during the code design process. The generated files are automatically

inserted into the active (default) target in the CodeWarrior project. Generated files corresponding to Embedded

Beans can be accessed in the "Generated Code" folder in the "Files" tab in the Code Warrior project window.

Other files, intended to be modified by users, are generated into the "User modules" folder in the "Files" tab in

the Code Warrior Project window. A user can also add his/her own specific source code files into this folder. If

the linker setting of the default target does not match the CPU in the Processor Expert project, the user is asked

whether to automatically set the correct linker settings in the default target or to create a new target with correct

linker settings. In the latter case the files will be generated in the new target (more information about the

CodeWarrior Project panel can be found in the CodeWarrior documentation). For more information on generated

files please see the chapter 3.15  Code Generation.

- 6 -

Processor Expert User's manual Introduction



Figure 1.2 - CodeWarrior project panel

1.2. Benefits of Embedded Beans and Processor Expert Technology

The key benefit of Embedded Beans is the same as using components in software design environments like

Microsoft Visual Basic or Borland Delphi. In comparison with components used within these products,

Embedded Beans provide hardware encapsulation in the form of a platform-independent standard. Different

players in the embedded market should benefit from such a standardization approach.

Microprocessor producers

Each year microprocessor producers introduce many new microprocessor families or derivatives. As the

complexity of microprocessors increases, programmers must handle more and more registers to get the required

functionality. Classical development tools usually do not support the rapid prototyping phase of design, and

classical programming languages are not able to efficiently describe the on-chip peripherals structure. On the

other hand, microprocessor producers need to speed up the learning, design and coding processes for their

customers.

For the designer, Processor Expert and its configuration and code generation features completely eliminate the

necessity to be otherwise preoccupied with hardware dependencies. Processor Expert could even suggest the

right member of a microprocessor family for the specific application.

Producers of intelligent peripheral I/Os and other devices

Complex and feature-rich peripherals and controllers require a big effort to use them efficiently, even if device

drivers are supplied by the factory. But imagine the possibility of supporting customers with components

providing a standard software interface that allows building applications and easily uses new hardware device

features.

And yes, the Processor Expert environment allows this - customers can easily download new components from

the internet and install them into Processor Expert.

- 7 -

Processor Expert User's manual Introduction



Producers of hardware of microprocessor systems

Microprocessor boards that are to be programmed by a customer must be well supported by software. Processor

Expert can handle software configuration and generation of drivers for microprocessor devices and off-chip

peripheral devices. Creating an application using Processor Expert takes usually 70% less time than with

standard Integrated Development Environments (IDEs) containing only a source code editor/compiler/debugger.

Producers of compilers, hardware emulators and simulators

Processor Expert is able to cooperate with other tools and IDEs because it works on a higher level of abstraction.

Tools suppliers can increase the attractiveness of their tools with Processor Expert features.

Producers of programmable logic (FPGA,..)

When a customer designs his own FPGA-based peripheral, it is possible to "bean-it" - to include its standard

form into the Processor Expert Embedded Beans palette. Then the design could be reused in software and

supplied to the customers of the FPGA designer with a full software support.

Producers of OS

Processor Expert can be used to build an OS kernel or OS drivers. Also, thanks to Processor Expert open

component architecture and support of pure software beans, Processor Expert can be used to build applications

benefiting from underlying operating system services.

Educational institutes

Microprocessor-oriented courses can benefit from the concentration of knowledge of microprocessor structures

and hardware independence delivered by Processor Expert . Design of applications starts from a definition of

functionality, which is then obtained very quickly by building the application from Embedded Beans. Students

can get the results very fast without struggling with problems that are not related to the subject of the course

(e.g., compiler bugs, errors in the documentation and so on).

Hardware and software developers

Shortening of the design and learning phase, speeding up the deployment of new components, full use of

hardware using tested software components, reducing time and cost of design - all these are keys to success

provided by Processor Expert.

- 8 -

Processor Expert User's manual Introduction



1.3. Features

Processor Expert has built-in knowledge (internal definitions) of the entire CPU with all of its units and

integrated peripherals. The CPU units and peripherals are encapsulated into configurable components called

Embedded Beans, each of which provides a set of useful properties, methods and events.

An intuitive and powerful User Interface (UI) allows the user to define the system behavior in several steps. A

simple system can be created just by selecting the necessary beans, setting their properties to the required values

and maybe also dragging and dropping some of their methods to the user part of the project source code.

PE key components

Graphical• IDE

Built-in• detailed design specifications of Freescale devices

Code• generator

PE key features

Design-time• verifications

CPU• selection from multiple CPU derivatives available

CPU• pin detailed description and structure viewing

Configuration• of functions and settings for the selected CPU and its peripherals

Definition• of system behavior during initialization and at runtime

Design• of application from pre-built functional components (called BEANS)

Design• of application using bean methods (user callable functions) and events (templates for user written

code to process events, e.g. interrupts)

Customization• of beans and definition of new beans

Tested• drivers

Library• of components/beans for typical functions (including virtual SW beans)

Verified• reusable beans allowing inheritance

Verification• of resource and timing contentions

CPU• resource meter/balancing

Concept• of project panel with ability to switch/port between CPU family derivatives

Code• generation for components included in the project

Implementation• of user written code

Interface• with Freescale CodeWarrior

PE based tool solution offers the following advantages to Freescale CPU customers:

In• all phases of development, customers will experience substantial reductions in

development- cost

development- time

Additional• benefits in product development process are

Integrated- development environment increases productivity

Minimized- time to learn Freescale CPU

- 9 -

Processor Expert User's manual Introduction



Rapid- prototyping of entire applications

Modular- and reusable functions

Easy- to modify and port implementations

Integrated development environment increases users' productivity

"This• tool lets me produce system prototypes faster because the basic setup of the controller is easier. This

could mean that I will implement more of my ideas into a prototype application having a positive effect on

the specification-, analysis- and design-phase. PE justifies its existence even when used for this purpose

alone!"

"This• system frees you up from the hardware considerations and allows you to concentrate on software issues

and resolve them thoroughly."

"Very• good for CPUs with embedded peripherals. It significantly reduces project development time."

The following are the primary reasons why users feel that way:

PE• has built-in knowledge (internal definition) of the entire CPU with all its integrated peripherals.

PE• encapsulates functional capabilities of CPU elements into concepts of configurable beans.

PE• provides an intuitive graphical UI, displays the CPU structure, and allows the user to take advantage of

predefined and already verified beans supporting all typically used functions of the CPU.

Applications• are designed by defining the desired behavior using the component settings, drag & drop

selections, utilizing the generated methods and events subroutines, and combining the generated code with

user code.

PE• verifies the design based on actual CPU resource and timing contentions.

PE• allows the efficient use of the CPU and its peripherals and building of portable solutions on a highly

productive development platform.

Minimized time to learn the CPU

There are exciting possibilities in starting a new project if the user is starting from ground zero even if the user is

using a new and unfamiliar processor.

The• user is able to utilize the CPU immediately without studying the CPU's documentation.

The• user is able to implement simple applications even without deep knowledge of programming.

PE• presents all necessary information to the user using built-in descriptions and hints.

PE• has built-in tutorials and example projects.

Rapid prototyping of entire applications

"Processor Expert allows the users to try several different approaches in real time, picking and choosing the best

of each for the final solution. Users are not confined to a pre-determined linear track to a solution."

Easy• Build of application - based on system functional decomposition (top-down approach)

Easy/Auto• CPU selection

Easy/Auto• CPU initialization

Easy/Auto• initialization of each internal peripheral

Simple• development of reusable drivers

Simple• implementation of interrupt handlers

- 10 -

Processor Expert User's manual Introduction



Inherited• Modularity and reuse

Inherited• ease of implementation of system hardware and software/firmware modifications

Modular and reusable functions

Processor Expert greatly decreases the start-up time and minimizes the problems of device idiosyncrasies.

It• uses the concept of a function encapsulating entity (called Embedded Bean) with supporting methods and

events

Uses• a library of predefined beans

Uses• a concept of device drivers and interrupt handlers that are easy to reapply

Uses• a concept of well documented programming modules to keep the code well organized and easy to

understand

Easy to modify and port implementations

PE allows optimal porting to a previously unused processor.

Supports• multiple devices within a project and makes it extremely easy to switch them

Supports• desired changes in the behavior of the application with an instant rebuild

Supports• interfacing of CodeWarrior

1.4. Concepts

The main task of Processor Expert is to manage CPU and other hardware resources and to allow virtual

prototyping and design.

Code generation from beans, the ability to maintain user and generated code, and an event based structure

significantly reduce the programming effort in comparison with classic tools.

Embedded Beans

Component (bean) is the essential encapsulation of functionality. For instance the TimerInt bean encapsulates all

CPU resources that provide timing and hardware interrupts on the CPU.

- 11 -

Processor Expert User's manual Introduction



Figure 1.3 - Example of TimerInt bean (periodical event timer) properties

Figure 1.4 - Timing dialog allows a user friendly setting of beans' timing

You'll find many components that we call Embedded Beans in the Processor Expert Bean selector window.

These components were selected to cover the most commonly required functionality used for microcontroller

applications - from handling port bit operations, external interrupts, and timer modes up to serial

asynchronous/synchronous communications, A/D converter, I2C, CAN, etc.

A bean provides a clear interface . By setting properties , a user defines the future behavior of the bean in

runtime. The user controls properties in design time by using the Beans Inspector. Runtime control of the bean

function is done by the Methods. Events are interfacing hardware or software events invoked by the bean to the

user's code.

The user can enable or disable the appearance (and availability) of methods of the bean in generated source code.

- 12 -

Processor Expert User's manual Introduction



Disabling unused methods could make the generated code shorter. See chapter 3.16 Code Optimizations for

details.

Events, if used, can be raised by interrupt from the hardware resource (timer, SIO,..) or by pure software reason

(overflow,..) in application runtime. You can enable or disable interrupts using bean methods and define priority

for event occurrence and for executing its Interrupt Service Routine (ISR). The hardware ISR provided by the

bean handles the reason for the interrupt. If the interrupt vector is shared by two (or more) resources, then this

ISR provides the resource identification. Then the user is notified by calling the user event handling code.

Creating Applications

Creation of an application with Processor Expert on any microcontroller is very fast. First choose and set up a

CPU bean, add other beans, modify their properties, define events and select Generate Code. Processor Expert

generates all code (well commented) from beans according to your settings. See chapter 3.15 Code Generation

for details.

This is, of course a only part of the application code that was created by the "virtual application engineer" -

Processor Expert CPU knowledge system and solution bank. The solution bank is created from hand written and

tested code optimized for efficiency. These solutions are selected and configured in the code generation process.

Enter your code for desired events, provide main code, add existing source code - and build the application using

classic tools - compiler, assembler - and debug it before the final burn-in. These are typical steps when working

with Processor Expert.

Other beans help you to very quickly include pictures, files, sounds, and string lists in your application .

The other beans can be obtained from www.processorexpert.com or created from existing sources, for instance

FFT. Other beans can incorporate already existing beans. They can inherit their properties, methods, and events.

Imagine that you want to share a bean with other developers. For example a bean that can drive an LED segment

display. Because it is used often for different hardware configurations - on different CPU pins - then it must be

portable and independent of CPU resources.

A lot of tasks and algorithms can be incorporated into a bean. Such beans are called software (SW) beans. SW

beans can be pure SW beans (FFT) or can inherit even multiple beans that encapsulate HW resources. The

advantage is independence on a physical layer, portability and sharing of once written and tested code.

For our example we simply choose as parents BitIO, BitsIO or ByteIO and TimerInt beans from the bean library.

The new LED display bean will provide the properties of a bean reference type for this bean. In design time this

allows the new bean access to its parents' properties and defines the physical connection pins or timer resources.

Additionally, the new bean will have its own properties and methods. Methods and events can be constructed

using the parent bean's methods.

Don't be concerned about the complexity of this process - simply choose from the Processor Expert Tools menu

the Beans Wizard tool which makes all the arrangements for you. You only need to enter the code of methods

and events, save new bean and install it on the Beans Palette or share it with others.

For additional information about Processor Expert and beans libraries please go to online help or the

www.processorexpert.com website.

Processor Expert has built-in knowledge (internal definitions) of the entire CPU with all of its units and

integrated peripherals. The CPU units and peripherals are encapsulated into configurable components called

Embedded Beans and the configuration is fast and easy using a graphical Bean Inspector.

Peripheral Initialization Beans (a subset of Embedded Beans) allows the user to setup initialization of the
particular on-chip device to any possible mode of operation. The user can easily view all initialization values

of the CPU produced by Processor Expert with highlighted differences between the last and current properties

settings.

- 13 -

Processor Expert User's manual Introduction



Processor Experts performs a design time checking of the settings of all beans and reports errors and warnings

noticing user about wrong property values or collisions in the settings with other beans in the project.

Processor Expert contains many useful tools for exploring a structure of the target CPU showing the details

about the allocated on-chip peripherals and pins.

Processor Expert generates a ready-to-use source code initializing all on-chip peripherals used by the bean

according to the bean setup.

1.5. Terms and Definitions Used in Processor Expert

Bean - An Embedded Bean is a component that can be used in Processor Expert. Embedded Beans encapsulate

the functionality of basic elements of embedded systems like CPU core, CPU on-chip peripherals, standalone

peripherals, virtual devices and pure software algorithms and wrap these facilities to properties, methods, and

events (like objects in OOP). Beans can support several languages (ASM, ANSI C, Modula and others) and the

code is generated for the selected language.

Bean Inspector - window with all parameters of a selected bean: properties, methods, events.

CPU Bean - bean which encapsulates the CPU core initialization and control. This bean also holds a group of

settings related to the compilation and linking (Stack size, Memory mapping, linker settings etc..). Only one

CPU bean can be set active as the target CPU. See chapter 3.3 CPU Beans for details.

Bean Driver - Bean drivers are the core of Processor Expert code generation process. Processor Expert uses

drivers to generate the source code modules for driving an internal or external peripheral according to the bean

settings. A Bean can use one or more drivers.

Events - are used for processing events related to the bean's function (errors, interrupts, buffer overflow etc.) by

user-written code. See chapter 3.2 Embedded Beans for details.

External user module - external source code attached to the PE project. The external user module may consist

of two files: implementation and interface (*.C and *.H).

Internal peripherals - internal devices of the CPU (ports, timers, A/D converters, etc. usually controlled by the

CPU core using special registers).

ISR - Interrupt Service Routine - code which is called when an interrupt occurs.

Methods - user callable functions or sub-routines. The user can select which of them will be generated and

which not. Selected methods will be generated during the code generation process into the bean modules.

Module - source code module. Could be generated by Processor Expert (Bean modules, CPU Module, events.c)

or created by the user and included in the project (user module).

OOP - Object-oriented programming (OOP) was invented to solve certain problems of modularity and

reusability that occur when traditional programming languages such as C are used to write applications.

PE - Abbreviation of Processor Expert which is often used within this documentation.

PESL (Processor Expert System Library) is dedicated to power programmers, who are familiar with CPU

architecture - each bit and each register. PESL provides the macros to access the peripherals directly, so PESL

should be used only in some special cases. See chapter 3.19.1 Processor Expert System Library for details.

Peripheral Initialization bean - encapsulates the whole initialization of the appropriate peripheral. Beans that

have the lowest levels of abstraction and usage comfort. See chapter 3.2.1 Bean Categories for details. They

usually do not support any methods or events except the initialization method. The rest of the device driver code

needs to be written by hand using either PESL or direct control of the peripheral registers. See chapter 3.19

Low-level Access to Peripherals for details.

- 14 -

Processor Expert User's manual Introduction



Popup menu - this menu is displayed when the right mouse button is pressed on some graphical object.

Properties - parameters of the bean. Property settings define which internal peripherals will be used by the bean

and also initialization and behavior of the bean at runtime.

Target CPU - the CPU derivative used in a given project.

Template - Bean Template is a bean with preset parameters.

User-defined Bean Template - User-defined bean template is a bean with preset parameters saved under a

selected name. Also the name of the author and short description can be added to the template.

User module - a source code module created or modified by the user. (Main module, event module or external

user module).

- 15 -

Processor Expert User's manual Introduction



2. User Interface

Menu

Processor Expert menu is integrated in the CodeWarrior IDE menu. It contains a new item named "Processor
Expert".

See Processor Expert plug-in Main menu page for description of individual items.

The user interface of Processor Expert consists of the following windows (integrated in CodeWarrior
IDE):

Project Editing Windows

Project• panel with beans (including CPU(s)), external modules and documentation included in project.

Project Panel supports several configurations of one project.

Inspector• - a window which allows the user to setup Beans and Configurations of the project.

Bean• Selector - shows all supported beans in the appropriate version of the Processor Expert including CPU

beans and bean templates.

Target• CPU - a window graphically showing CPU package, structure and beans connected to internal

peripherals. Allows to easily add beans related to a specific peripheral to the project using a pop-up menu of

the peripheral.

Project Information Windows

Error• window - a window with errors, warning messages and hints from project checking, generation and

from external tools

CPU• Timing Model - a window showing the target CPU's timing.

Peripheral• Initialization - shows overview of peripheral initialization settings for the current CPU.

Peripherals• Usage Inspector - a window showing which bean allocates which on-chip peripheral.

Resource• Meter - a window displaying the amount of the target CPU's resources already allocated.

Memory• Map - a window showing the CPU address space and internal and external memory mapping.

Processor Expert Overview Windows

Installed• Beans Overview - this window contains information about installed beans in the current version of

Processor Expert.

CPU• Types Overview - a window displaying the list of the database's CPUs supported by the current version

of Processor Expert.

CPU• Parameters Overview - a window providing access to the CPU's database.

PDF• Search - a window allows the user to quickly browse in a PDF documentation for the CPU.

- 16 -

Processor Expert User's manual User Interface



Dialogs

There are the following dialogs for setting the Processor Expert environment:

Environment• Options - Processor Expert plug-in environment options

Tools• Setup - setup dialog box for the tools and the tools menu

There are the following dialog for setting the Processor Expert project:

Project• Options - project options are options concerning the current project and options for the current CPU.

2.1. Main Menu

The Processor Expert Plug-in is integrated into the CodeWarrior IDE application. The CodeWarrior IDE main

menu contains a new menu item named "Processor Expert".

Figure 2.1 - Processor Expert's Integrated Menu

The Processor Expert's plug-in menu consists of the following items:

Suspend/Open• Processor Expert

Generate• Code "ProjectName.mcp"

Freeze• Generated Code

View• 

Tools• 

Options• 

Update• 

Undo• 

Redo• 

Bring• PE Windows to Front

Arrange• PE Windows

Import• 56800/E project from Quick-Start

Note: Processor expert's help is placed in the Codewarrior's 'Help' menu.

- 17 -

Processor Expert User's manual User Interface



Suspend/Open Processor Expert - Suspend Processor Expert will disable usage of Processor Expert for the

currently opened project. Open Processor Expert will enable the Processor Expert for the current project.

When PE is enabled for a project that had never had PE activated, PE will popup a dialog that notifies the user

that PE will add files (IOMap.c/h) containing declarations for the peripheral modules to the project, so the user

should know how to adapt the project himself (there might be other files as well (e.g. linker parameter file) that

can cause conflicts too). This command is intended for experienced users only. New Processor Expert project

should be created using the File | New command.

Code Generation - Invokes code generation for the current project. The generated files are automatically

inserted into the active (default) target in the CodeWarrior's project. Generated files corresponding to the

Embedded Beans can be accessed in the "Generated Code" folder in the "Files" tab in the CodeWarrior project

window. The other files, intended to be modified by the user, are generated into the "User modules" folder in the

"Files" tab in the CodeWarrior project window. A user can also add specific source code files into this folder. If

the linker setting of the default target does not match the CPU in the Processor Expert project, the user is asked

whether to automatically correct linker settings in the default target or to create a new target with correct linker

settings. In the latter case the files will be generated in the new target (see also chapters 3.15  Code Generation

and 3.15.1  Linker Dialog).

Freeze Generated Code - This option will freeze the state of the generated code and the code generation will be

disabled until the user will un-check this option. All beans and project settings will became read-only and it

won't be possible to add or remove any beans. Processor Expert won't make any changes to the source code.

Processor expert, if it detects any changes since last code generation, will offer code generation before switching

to the 'frozen' mode.

View

Project• Panel - displays the Processor Expert plug-in Project panel.

Inspector• - displays inspector window for the currently selected item of the project (Bean, CPU bean,

Peripheral Initialization bean, Configuration)

Bean• Selector - shows the Bean Selector. Bean Selector shows all supported beans in the appropriate version

of the Processor Expert plug-in including CPU beans.

Target• CPU Package - displays the Target CPU Window in CPU Package view. This window displays the

target CPU (CPU selected as destination) with its peripherals and pins.

Target• CPU Block Diagram - displays the Target CPU Window in Block Diagram view. This window

displays the target CPU (CPU selected as destination) block diagram with its peripherals.

Error• Window - displays the Error window. This window displays errors, warnings, and hints.

Target• CPUTiming Model - displays the CPU timing hierarchy.

Peripheral• Initialization - opens the Peripheral Initialization window for the Target CPU. (this command is

available only if a target CPU is selected)

Peripherals• Usage - shows the CPU Peripherals Usage window.

Resource• Meter - displays the Resource Meter window. The Resource Meter shows the current status of a

chip resources usage (or availability).

Memory• Map - opens the Memory Map window. This window shows the CPU address space and internal

and external memory mapping.

Installed• Beans Overview - displays a list of installed beans and CPUs with additional information about

bean drivers and projects with typical settings.

CPU• Types Overview - displays the CPU overview window with a tree of supported CPUs (the active

CPU's package is displayed in the Target CPU Window).

- 18 -

Processor Expert User's manual User Interface



CPU• Parameters Overview - displays the CPU parameters overview table and the query dialog that

provides help for the selection of the most adequate processor.

Tools

Tool• #1

Tool• #2.... - optionally, any other external tool can be added. The tools can be added, modified or deleted in

the "Tools Setup" dialog.

Note: Bean Wizard can be added also to the Tools menu. Help for the Bean Wizard can be found in the Bean

Wizard.

Options

Environment• Options , Project Options , Application Options - opens an appropriate page within the

Processor Expert Options dialog window that allows to customize all settings related to the environment and

project. See chapter 2.1.1 Processor Expert Options for details.

Tools• Setup - allows external tools to be included in the Processor Expert's plug-in environment. The tools

may then be accessed via the "Tools" menu. The setting changes will take effect after the restart of the

CodeWarrior application. See chapter 2.1.2 Tools Setup for details.

Save• desktop - saves the desktop settings (windows' position) to the .DSK file. The desktop file can also be

saved automatically if the option Environment Options | Autosave desktop is enabled in Environment

Options.

Update

Update• Processor Expert from Package - this command allows the user to update or add new beans from

compressed packages (*.PEupd) that can be downloaded from the Processor Expert web site. It is possible to

select more beans in the selected directory using a multi-select function. To add more beans select the

requested bean using the mouse and holding down the CTRL (or Shift) key.

The information on the package content is shown when the package is selected within an opening dialog

window.

Check• Processor Expert Web for updates - check for updates on the Processor Expert web site. If there is

any news for your version, Processor Expert offers you to open the corresponding page in a default Internet

browser.

Undo [actionname]

Restores the state of the project before a last operation. This command affects only changes in the project
(i.e. adding or removing beans, disabling beans etc.). It doesn't work on the source code editor actions.

Functionality of this command is influenced by the option Environment Options | Number of UNDO
operations. The '0' value of this option will disable the functionality of this command.

- 19 -

Processor Expert User's manual User Interface



Redo [actionname]

Applies again the change previously discarded by a use of the Undo command. This command affects only
changes in the project (i.e. adding or removing beans, disabling beans etc.). It doesn't work on the source code

editor actions. Functionality of this command is influenced by the option Environment Options | Number of
UNDO operations. The '0' value of this option will disable the functionality of this command.

Bring PE Windows to Front

Sets the main Processor Expert's windows to the front on the screen.

Arrange PE Windows

Arranges all open windows to the default placement on the screen. (Project Panel, Bean Selector, Cpu Panel,

Error Window, Resource Meter, Bean Inspector)

Import 56800/E project from Quick-Start

Imports an old Quick-Start project for 56800/E derivatives and creates the appropriate Processor Expert project

with corresponding CPU bean and Peripheral Initialization beans. For more details please refer to the chapter

3.20  Import 56800/E Project From Quick-Start.

2.1.1. Processor Expert Options

Processor Expert | Options | Environment Options
Processor Expert | Options | Project Options
Processor Expert | Options | Application Options

Processor Expert options allows to customize all Processor Expert's settings within one dialog window.

Figure 2.2 - Environment Options Example

The options are organized within three pages

Application• Options - options for the Processor Expert code generation (for one target CPU). They are

local, i.e they are valid only for the current application (an application is the subset of the project that

- 20 -

Processor Expert User's manual User Interface



concerns a given target processor).

Environment• Options - options related to Processor Expert's environment behavior.

Project• Options - options concerning the current project (all target CPUs).

The item description for an item is provided as a hint when the user places mouse cursor on the item. Press Help
button to open the options description pages.

Basic, Advanced and Expert buttons allow to customize the amount of options shown along to the user's

experience level.

This window uses a limited version of Processor Expert Inspector to show the options information. Thus the way

of changing options is very similar to the way of configuring a bean or configuration. See chapter 2.5.1 Inspector

Items for details.

2.1.2. Tools Setup

Processor Expert | Tools | Tools Setup

Tools Setup - allows include tools in the Processor Expert environment. The tools may then be accessed via the

Tools menu.

Options

Tool• name - name of the tool, as it appears in the Tools menu.

Visible• in Tools menu - whether the tool is available in the Tool menu (it may not be necessary to let it

appear in the menu if the settings are meant only for internal make)

Application• - the full name (name and path name) of the application (executable file, EXE or COM

extension).

Working• dir - working directory of the application

Application• type

MS-DOS- real - MS-DOS real mode application.

MS-DOS- protected - MS-DOS protected mode application.

Windows- 16-bit - 16-bit MS Windows application.

Windows- 32-bit - 32-bit MS Windows application.

Autodetect- - auto detection (enabled under Windows NT only).

Hot• Key - Hot Key for launching the tool.

Parameters• - parameters of the application.

Input• file(s) - only for backward compatibility, value of the $OUTPTH macro (see macros).

Output• file(s) - only for backward compatibility, value of the $IN?PTH macro (See chapter 2.1.2.1 Tools

Setup Macros for details.).

There is no warranty that these items will be supported in the next version of Processor Expert.

Comment• - any text describing the tool.

Wait• for application termination - Processor Expert waits for application termination before executing any

other operation (it has the advantage of reserving the error window for the application).

Redirection- of application output - Processor Expert captures the standard output of the application and

displays errors in the Message Window.

Input- file - name of the input file for the application. If you don't specify any, a temporary file will be

- 21 -

Processor Expert User's manual User Interface



created (see macros).

Output- file - name of the file for the redirection of the application output. If you don't specify any, a

temporary file will be created (See chapter 2.1.2.1 Tools Setup Macros for details.).

Error- output - name of the file for the redirection of the application error output. If you don't specify

any, a temporary file will be created (See chapter 2.1.2.1 Tools Setup Macros for details.)

Hint- format - format of the hint messages.

Warning- format - format of the warning messages.

Error- format - format of the error messages.

Fatal- error format - format of the fatal error messages.

Exitcode- <> 0 - defines the action that will be done when the exit code of the application will not be

zero. The following actions are possible:

Ignore- - no action

Display- error - an error message will be displayed

Show- output file - opens the file defined as a tool output file in the editor.

Figure 2.3 - Tools Setup Dialog

- 22 -

Processor Expert User's manual User Interface



2.1.2.1. Tools Setup Macros

Global macros

Global macros are used in the following items: Application, Working directory, Parameters, Input file(s),

Output file, Input files for redirection, Output file for redirection, Error output file for redirection, Format of all

messages

$PRJNAME• - current name of the project without extension

$DIRPRJ• - current directory of the project, absolute path, terminated with a backslash

$DIRDRV• - current destination directory of drivers, absolute path, terminated with a backslash

$DIRRELDRV• - current destination directory of drivers, relative or absolute path from Project Options

setting, terminated with a backslash ($DIRRELEVENT+$EVENTTODRV)

$DIREVENT• - current destination directory of main and event modules, absolute path terminated with a

backslash

$DIRRELEVENT• - current destination directory of main and event modules, relative or absolute path from

Project Options setting

$DIRBIN• - current destination directory of binary files (maker, linker and object), absolute path terminated

with a backslash

$DIRRELBIN• - current destination directory of binary files, absolute or relative path starting from Project

Options setting, terminated with a backslash ($DIRRELEVENT+$EVENTTOBIN)

$DRVTOEVENT• - relative path from drivers directory to main and event modules directory (drivers -

Driver subdir., event - Main and event dir. from Project Options)

$EVENTTODRV• - relative path from main and event modules directory to drivers directory

$EVENTTOBIN• - relative path from main and event modules directory to binary files directory

$DIR_PE• - system directory of Processor Expert, absolute path, terminated with a backslash

$FILEDIR• - directory of the file that is currently edited or directory of the file that will be opened in

External Text Editor, terminated with a backslash.

$FILENAME• - name of the file that is currently edited or name of the file that will be opened in External

Text Editor (including extension).

$FILENAM• - name of the file that is currently edited or name of the file that will be opened in External

Text Editor (without extension).

$GOTOLINE• - line that should be selected in External Text Editor.

$?FILE(Question)• - name of the file set manually, Question is displayed to the title of window

$?PARAM(Question,• Default) - parameters set manually, Question is displayed to the title of window,

Default is a default value

$COMSPEC• - setting of the COMSPEC variable in the Windows environment

$MAKEFILE• - name of the currently used makefile for the current project.

- 23 -

Processor Expert User's manual User Interface



Global macros after code generation

The following macros are supported only after successful code generation. Can be used in the same items as

the Global Macros.

$GENDIRPRJ• - directory of the project during last successful code generation, absolute path, terminated

with a backslash

$GENDIRDRV• - destination directory of drivers during last successful code generation, absolute path,

terminated with a backslash

$GENDIRRELDRV• - same as $GENDIRDRV during last successful code generation, only relative path

($GENDIRRELEVENT+$GENEVENTTODRV)

$GENDIREVENT• - destination directory of main and event modules during last successful code generation,

absolute path terminated with a backslash

$GENDIRRELEVENT• - same as $DIRRELEVENT during last successful code generation

$GENDIRBIN• - destination directory of binary files during last successful code generation

$GENDIRRELBIN• - same as $GENDIRBIN during last successful code generation, only relative path

($GENDIRRELEVENT+$EVENTTOBIN)

$GENDRVTOEVENT• - relative path from drivers directory to main and event modules directory during

last code generation

$GENEVENTTODRV• - relative path from main and event modules directory to drivers directory during

last code generation

$GENEVENTTOBIN• - relative path from main and event modules directory to binary files directory during

last code generation

$GENPRJNAME• - name of the project during last successful code generation

Macros in format

List of macros that can be used for definition of tool output messages format:

$ERRPTH• - name of file where errors were found

$ERRMSG• - full / partial error message

$FIRROW• - first row position

$FIRCOL• - first column position

$LASROW• - last row position

$LASCOL• - last column position

$MSGSKP• - skip next string

$MSGEND• - end/continuation of error message

$MSGSTR• "string1"string2 - string1 is written to error message and then string2 is skipped as in command

$MSGSKP

- 24 -

Processor Expert User's manual User Interface



Backward compatibility

The following macros are supported only for backward compatibility. There is no warranty that they will be

supported in the next version of Processor Expert.

$REDDIR• - full path name of project directory for redirection

$REDINP• - full path name of input file for redirection

$REDOUT• - full path name of output file for redirection

$REDERR• - full path name of error file for redirection

$IN?DIR• - directory of input file, "?" is a number of input file from interval 0..9

$IN?NAM• - name of input file, "?" is a number of input file from interval 0..9

$IN?EXT• - extension of input file, "?" is a number of input file from interval 0..9

$IN?PTH• - full path name of input file, "?" is a number of input file from interval 0..9

$OUTDIR• - directory of output file

$OUTNAM• - name of output file

$OUTEXT• - extension of output file

$OUTPTH• - full path name of output file

$DRIVERS(FORMAT)• - list of the all generated drivers

$EVENTS(FORMAT)• - list of all generated event modules

$SHARED(FORMAT)• - list of all generated shared modules

2.2. Help and Manuals

Help | Processor Expert >

The following items are available within this menu:

Processor• Expert Help - the start page of the Processor Expert plug-in help.

Concepts• - introduction to Processor Expert concepts.

Benefits• - who Processor Expert may benefit.

User• Interface - description of Processor Expert plug-in environment.

Tutorial• - tutorial course.

Quick• Start - how to start with Processor Expert plug-in.

Embedded• Beans - index page of the Embedded Beans documentation.

Bean• Categories - index page of the Embedded Beans Categories.

Bean• Keywords - page of the commonly used keywords related to embedded beans.

Supported• CPUs, Compilers and Debuggers - list of CPUs/Compilers/ Debuggers supported in the current

version of Processor Expert plug-in.

View• Readme and Revision History - Displays information about used Processor Expert plugin version,

basic installation instructions, content of installation, FAQ, history of the signifiacnt changes from previous

versions, known problems and limitations and other related information.

User• Guide - Opens a brief user's guide delivered with Processor Expert.

- 25 -

Processor Expert User's manual User Interface



Search• in PDF Documentation of the Target CPU - displays PDF documentation of the current CPU in

the PDF Search window. It is possible to search any keyword in the CPU documentation based on the

original manufacturer's CPU manual. See chapter 2.17 PDF Search for details.

Go• to Processor Expert Home page - display Processor Expert home page in default Internet browser.

Processor• Expert On-line Support - opens the web pages related to the customer support for the currently

run Processor Expert version.

About• Processor Expert & Tip Of The Day - displays the About dialog containing information about the

Processor Expert product version for the target CPU family and current version of Processor Expert IDE.

The Tip of the day is displayed along with this dialog. Next tips can be viewed with using the button 'Next

tip'.

The Installed updates button opens the dialog containing all already installed update packages. After each

update Processor Expert automatically copies installed update package to the folder shown by this dialog.

Selecting an update package will show a window with detailed update description. The dialog is for

information only and no action is done with the selected file.

2.3. Project Panel

Processor Expert | View | Project Panel

Processor Expert Project Panel is a tab in CodeWarrior's project window (panel). When the 'Project Panel' is

noticed in Processor Expert documentation the 'Processor Expert Project Panel' is understood.

Figure 2.4 - Processor Expert tab

The Project panel shows the application components:

Configurations• of the project.

Operating• System - Beans related to operating system used by the application (if there is some operating

system present).

CPUs• (CPU beans) included in the project

Embedded• Beans included in the project. Every bean inserted in the project is displayed in the project panel

and has a subtree showing

Methods- - Methods allow runtime control of the bean's functionality.

Event- routines - Events allow handling of the hardware or software events related to the bean. If the

event is disabled, the name of the event is shown. For enabled events, the name of the handling function

is shown.

Initialization- code items - Part of the initialization code that can/must be modified by the user.

ISRs- - represent bean-related interrupt routines that can be created by the user for low level interrupt

processing. For items, whose ISR names have been specified within a bean settings, a user-specified

name of an ISR and name of the interrupt vector is shown. If an ISR name was not specified (interrupt

- 26 -

Processor Expert User's manual User Interface



has to be disabled in this case), only the interrupt vector name is present.

All bean's items has its status icon that signalizes the enabled ( ) or disabled ( ) state. If this state cannot

be directly changed, the background of the icon is gray. For more details please see chapter 3.2  Embedded

Beans.

User• modules included in the project (main module, event module, external user modules ...)

Generated• Modules - This folder contains the modules generated by Processor Expert. There is a special

subfolder for the generated Bean Modules. For the bean module description please see chapter 3.15  Code

Generation.

External• Modules - This folder contains the modules that are not generated by Processor Expert but are

required for the application such as libraries or system modules. These files are not influenced by Processor

Expert but they are linked to the final application.

Documentations• - list of files attached into project as documentation, with relative or absolute path. No

actions are made with these files. Please refer to chapter 3.15   Code Generation for details on generated

documentation files.

PESL• methods (if PESL is enabled)

All Project Panel items are organized in folders in a tree. You can expand and collapse a tree's branches by

clicking on the plus "+" or minus "-" signs, respectively. You can create your own folders in the Beans folder

and move beans between them using mouse drag and drop function.

The following icons indicate the status of each project panel item:

Beans - Processor Expert didn't found any problems in the bean's settings.

Configurations - configuration is selected as active.

CPUs - CPU is currently selected as a target CPU.

User Module, Generated Module - The module is all right and included in the project.

PESL - Processor Expert System Library is enabled.

Beans - Gray cross means that bean is disabled and code won't be generated for it.

Configurations - Configuration is not active. Double click the icon to select it as active

configuration.

CPUs - CPU is not selected as target CPU. Double click the icon to select it as the Target CPU.

User Module - The user module is disabled. It is not possible to disable the Main and Event modules.

PESL - Processor Expert System Library is disabled.

Beans, CPUs - beans (CPU bean's) settings are wrong or conflict with another bean. See chapter 3.10

Design Time Checking: Consequences and Benefits for details.

Possibly incorrect setup was found in project or in bean's settings. The warnings are displayed in Error

window including simple description.

Icons near the bean's icon mean the bean is individually setup for preserving user changes in

generated code. See chapter 3.18 User Changes in Generated Code for details.

The Project panel window allows quick access to supported methods and events using mouse. See paragraph

Other mouse actions.

- 27 -

Processor Expert User's manual User Interface



Pop-up menu

Project panel pop-up menu is accessible by right click on the empty (white) area of the Project Panel. Contains

basic operations related to the project and beans.

Open• Project - allows the user to open Processor Expert project from disk.

Save• Project - saves the current state of the project (e.g. all the bean and processor expert settings). Project

is also automatically saved when CodeWarrior or project is closed.

Copy• Project to... - copies the Processor Expert project file (.PE containing settings of all beans) and the

user modules into another directory. It is useful for backing up the state of the project. The stored file could

be opened again using Open project command from this menu.

Reload• Project - Reloads project from the last saved state on the disk.

Add• Bean(s) - allows to add beans from the project. Shows bean selector dialog.

Import...• - imports the content of the file containing exported objects (e.g. beans, configurations...) or whole

project.

All items from the imported file will be added into the current project.

Export...• - exports the selected objects in the project panel (e.g. beans, configurations...)to the specified file.

Its possible to insert them into another project using the Import... command.

Cut• - cuts selected bean with its settings to the clipboard.

Copy• - copies selected bean with its settings to the clipboard.

Paste• - inserts bean from the clipboard to the current project.

Help• - displays related information for currently selected bean or method. If there is nothing selected this

help page for Project Panel is displayed.

Pop-up Menus of Objects

Pop-up menus of individual objects in project panel are accessible with a right mouse button click on the
object's icon or label.

Configurations• pop-up menu

CPUs• pop-up menu

Beans• and its methods/events/init code pop-up menus

User,• generated and external modules menus

Documentations• pop-up menu

PESL• pop-up menu

Other mouse actions

Drag'n'drop

Dragging• method (or PESL command) with the left mouse button to the source editor will place a

method call to the source code. If the shift key is hold while the users drag and drops the method, the call is

placed exactly to the mouse cursor position on the line. Otherwise the call is placed on the new line. A

behavior of this function is controlled by the option Environment Options | Drag'n'drop method
declaration. See chapter 2.1.1 Processor Expert Options for details.

Dragging• user module into the source code will create an #include command (#include

"user_module_name.h") at the place of the cursor.

- 28 -

Processor Expert User's manual User Interface



The• user can drag'n'drop components within the Project Panel to reorganize component trees (CPUs,

Beans, Documentation)

Multiselect

Using• the Ctrl and Shift key together with cursor key or left mouse button allows to select multiple items.

Double click

Double-clicking• the bean icon in the Project panel opens the Bean Inspector

Clicking• on the selected bean name in the Project Panel allows you to edit the name of the selected bean

Double• clicking on any event/method/initialization enable/disable icon changes its enable/disable state
(you can do it also via the bean inspector)

Double• clicking on any event/method name after code generation opens the file editor/viewer at the

position of the event/method's code

Double• clicking on any ISR opens the source code editor at the interrupt routine (if its name has been

specified within the bean properties).

Automatic Hints

Placing• the cursor on any event/method icon/name displays the event/method's and parameter's description

and syntax

Placing• the mouse over any bean icon/name displays the bean description

- 29 -

Processor Expert User's manual User Interface



Figure 2.5 - The content of the Project Panel

2.3.1. Configurations Pop-up Menus

Configurations folder pop-up menu

This menu is opened by right-clicking on the Configurations folder icon in the Project panel . Following

commands are available:

Add• new configuration - add a new configuration into the project. All configuration settings (i.e. target

CPU selection and state of all beans) are copied from the currently active configuration to the new one.

Configurations• Editor - opens the Configuration Editor.

Expand/Collapse• - expands/collapses one level of the folder's tree.

Expand• all - completely expands the folder's tree.

Collapse• all - completely collapses the folder's tree.

- 30 -

Processor Expert User's manual User Interface



Delete• all configurations - deletes all the content of the folder.

Help• - displays documentation.

Configuration pop-up menu

This menu is opened by clicking on the icon of one of the configurations in the configurations folder of the

Project panel. Following commands are available:

Configuration• Inspector - invokes Configuration Inspector (default on double-click) .

Select• Configuration as Active - selects this configuration as active.

Delete• Configuration - removes this configuration from the project.

Add• New Configuration - adds a new configuration to the project.

Rename• Configuration - renames this configuration.

Help• - displays documentation.

For more information about configurations see chapter 3.9  Configurations.

2.3.2. Configurations Editor

Project panel | Configurations pop-up menu | Configurations Editor

Configurations editor shows a table of all configurations and currently selected target CPUs and Embedded

Beans state in the configurations. The leftmost gray column contains a name of one configuration in each row

and the header of the table contains the names of the beans. For details on configurations please see the chapter

3.9  Configurations.

The first column of the table data contains the name of the currently selected target CPU for each configuration.

To choose a different target CPU use the pop-up menu available after the right mouse button click on the

appropriate cell.

Next columns represent the beans in the project. Each field in the beans columns contains a 'Y' if the bean is

enabled or 'N' if the bean is disabled in the specific configuration. To change the value of the field from 'Y' to 'N'

or vice versa double click the field with the left button.

- 31 -

Processor Expert User's manual User Interface



2.3.3. CPUs Pop-up Menus

CPUs Folder Pop-up Menu

This menu is opened by right-clicking on the CPUs folder icon in the Project panel . It proposes a set of

commands to manage CPUs folder. Following commands are available:

Expand/Collapse• - expands/collapses one level of the folder's tree.

Expand• all - completely expands the folder's tree.

Collapse• all - completely collapses the folder's tree.

Change• folder name - edit the subfolder name.

Delete• folder - deletes the subfolder and all its contents.

Delete• all beans - deletes all the contents of the folder.

Add• subfolder - creates a new subfolder.

Help• - Displays related information for currently selected bean or method. If there is nothing selected this

help page for Project Panel is displayed.

CPU Pop-up Menu

This menu is opened by right-clicking on a CPU icon in the CPUs folder in the Project Panel.

Following commands are available:

CPU• inspector - opens the CPU's Bean inspector. Detailed help concerning the Bean Inspector items can be

found in the CPU's page of Processor Expert help (see Processor Expert | Help | Supported CPUs and
Compilers page).

Select• CPU as Target - if several CPUs are in the current project, it sets the CPU as target - the CPU will

appear on the Target CPU window and the code will be generated with the Project options of active target.

Rename• CPU - allows you to give a project-specific name to the selected CPU

CPU• Peripherals Names - opens the CPU peripheral´s names editor.

View• Target CPU Package - opens the Target CPU window in Package view.

View• Target CPU Block Diagram - opens the Target CPU window in Block Diagram view.

View• CPU Timing Model - displays the CPU Timing Model window.

View• Memory Map - displays the Memory map window. This window shows the CPU address.

Space and internal and external memory mapping.

Search• in PDF Documentation - displays the PDF Search window. The window allows a full-text search in

the original CPU manufacturer's documentation. See chapter 2.17 PDF Search for details.

View• Source - displays the generated CPU module in the File editor.

View/Edit• Event Module - displays the generated CPU events module in the File editor.

View/Edit• Main Module - displays the generated main module in the File editor.

View• Linker File - displays the generated linker file (if it exists) in the File editor.

View• Makefile - displays the generated maker file (if it exists) in the File editor.

View• MAP File - displays the MPA file in the File editor.

View• List of Methods - displays the list of methods.

- 32 -

Processor Expert User's manual User Interface



Restore• Default Template Settings - restores default setting of the template.

Customize• this bean template - saves the highlighted (chosen) CPU and its settings as a template.

Remove• CPU From Project - removes the highlighted (chosen) CPU from the project.

Help• - displays documentation.

2.3.4. Beans Pop-up Menus

Beans Folder Pop-up Menu

This menu is opened by right-clicking on the Beans folder icon in Project Panel. Following commands are

available:

Expand/Collapse• - expands/collapses one level of the folder's tree.

Expand• all - completely expands the folder's tree.

Collapse• all - completely collapses the folder's tree.

Change• folder name - edits the subfolder name.

Delete• folder - deletes the subfolder and all its contents.

Delete• all beans - deletes all beans from the project.

Add• bean(s) - invokes a dialog which allows the user to choose and add new beans to project.

Add• subfolder - creates a new subfolder.

Import• - Imports all items from a .pe file containing exported objects or whole project.

Export• - Exports selected objects in the project panel to the file.

Help• - displays documentation.

Bean Pop-up Menu

This menu is opened by clicking right mouse button on the icon of the bean from the beans folder of the Project

panel. Following commands are available:

Bean• inspector - opens the Bean inspector of the bean. Detailed help concerning the Bean Inspector items

can be found in the bean's page of Processor Expert help.

Bean• enabled - if checked, the selected bean is enabled (included in project).

Code• generation - allows to individually specify how the and user changes and code generation for the bean

are handled by Processor Expert. See chapter 3.18 User Changes in Generated Code for details.

Always- Write Generated Bean Modules (default) - generated bean modules are always written to disk

and any existing previous module is overwritten

Preserve- User Changed in Generated Bean Modules - smart detection of user changes.

Notice: Smart user changes preservation is available only in the 56F800/E version.

Don't- Write Generated Bean Modules - the code from bean is not generated. Any initialization code of

the bean, which resides in the CPU bean, interrupt vector table and shared modules are updated.

Compare- with Previously Generated Module, Compare with Previously Generated Header Module
- compares a file generated by the bean with a previously generated one. The user can use this function to

easily track his/her changes made in the generated code. The both commands are available only when the

'Preserve User Changes' option is switched. See chapter 2.1.1 Processor Expert Options for details. The

- 33 -

Processor Expert User's manual User Interface



bean has to be setup to 'Preserve User Changed in Generated Bean Modules' or 'Don't Write Generated

Bean Modules' mode (in this pop-up menu). An internal file-editor in read-only comparison mode is used

to show the files differences. See chapter 2.16 File Editor for details.

Rename• Bean - allows you to give a project-specific name to the selected bean.

View• Source - displays the generated module of the bean in File editor.

View/Edit• Event Module - displays the generated events module of the bean in the File editor.

Restore• Default Template Settings - restores default template settings. All old settings will be lost.

Customize• this bean template - saves the selected bean as a template

Disconnect• Bean From CPU - removes the link(s) between the bean and the associated CPU peripheral(s) (

it clears the corresponding properties of the bean).

Remove• Bean From Project - removes the selected bean from the current project.

Copy• to Clipboard - bean with its settings is copied to the clipboard.

Help• - displays documentation.

Methods and Events

This menu is opened by right-clicking on a method or event icon in the Project Panel. It proposes a set of

commands concerning the selected method/event.

Enable/Disable• - enables/disables the selected method/event in current project.

View• source(method only) - shows generated method source. Available only after successful code design.

Edit• code(event only) - opens a selected event in editor. Available only after successful code generation.

Help• - displays documentation.

Init Code

This menu is opened by right-clicking on init code item on its icon in the Project Panel. It proposes a set of

commands concerning the selected initialization code item.

Enable/Disable• - enables/disables the selected item in current project.

View• source - shows generated source of the initialization. Available only after successful code generation.

Please see the code and comment describing what should be provided in user's code.

Help• - displays documentation.

ISRs

This menu is opened by righ-clicking on ISR item in the Project Panel.

Rename• ISR - opens the Bean Inspector and selects the property that specifies the name of the interrupt

routine.

Edit• Code - opens the source code editor at the interrupt routine (if its name has been specified within the

bean properties).

Help• - Shows the related help for the bean.

- 34 -

Processor Expert User's manual User Interface



2.3.5. User and Generated Modules Pop-up Menus

User Modules Folder Pop-up Menu

Add• User Module - This menu allows to add a user source code module of the specified type to the project.

The user can choose the file extension from the submenu and select the file using a standard windows

file-selection dialog.

New• User Module - User can choose a new file type and specify the file name and path. The new file is

added to the project.

Expand/Collapse• - expands/collapses one level of the folder's tree

Expand• All - completely expands the folder's tree.

Collapse• All - completely collapses the folder's tree.

Delete• All User Modules - removes all previously added user modules from the project. The user is asked

for a permission on removing the modules. The main user module {projectname}.c and events module

events.c cannot be removed from the project.

Help• - displays an appropriate help page.

User Module Pop-up Menu

Edit• Source... - opens the source code in the editor.

User• Module Enabled - The user module is enabled for the compilation.

User• Module Inspector - The User Module Inspector window is shown. It allows the user to customize the

name and directory of the module.

Remove• User Module - removes the user module from the project.

Help• - displays an appropriate help page.

Generated Modules Pop-up Menu

View• Source - opens the module source code in the editor.

Code• Generation - enables/disables overwriting of the module by Processor Expert. This option is available

only for common modules (like vectors.c) or modules not related to a specific bean. For bean modules

generation control use the pop-up menu of the bean instead. See chapter 3.18 User Changes in Generated

Code for details.

Always- Write - allows a module to be overwritten.

Don't- Write - disables any modification by Processor Expert.

Help• - displays an appropriate help page.

External Modules Pop-up Menu

View• External Module - opens the module source code in the editor.

Help• - displays an appropriate help page.

- 35 -

Processor Expert User's manual User Interface



2.3.6. Documentations Pop-up Menu

Documentations Folder Pop-up Menu

This menu is opened by right-clicking on the Documentation folder icon in the Project Panel. Following

commands are available:

Add• documentation file - add a new documentation file into project

New• documentation

Text- file - creates a new text documentation file.

HTML- file - creates a new HTML documentation file.

Expand/Collapse• - expands/collapses one level of the folder's tree.

Expand• all - completely expands the folder's tree.

Collapse• all - completely collapses the folder's tree.

Delete• all documentation - deletes all the contents of the folder.

Help• - displays documentation.

Documentation Pop-up Menu

This menu is opened by clicking right mouse button on the documentation file from the Documentations folder

of the Project panel. Following commands are available:

View• documentation - shows the document in the File Editor.

Edit• documentation - edits the document in the File Editor.

Open• in external viewer - uses the default shell editor to open the document.

Remove• from project - removes the document from the project.

Help• - displays documentation.

2.3.7. PESL Folder Pop-up Menus

PESL Folder Pop-up Menu

This menu is opened by right-clicking on the PESL folder icon in the Project Panel. Following commands are

available:

Expand/Collapse• - expands/collapses one level of the folder's tree.

Expand• all - completely expands the folder's tree.

Collapse• all - completely collapses the folder's tree.

PESL• enabled - enables/disables use of the PESL (Processor Expert System Library)

Help• - displays documentation.

- 36 -

Processor Expert User's manual User Interface



PESL Command Pop-up Menu

This menu is opened by right-clicking on the PESL item.

Following commands are available:

Help• - displays PESL documentation for the selected item.

2.4. Bean Selector

Processor Expert | View | Bean Selector

Bean Selector shows supported embedded beans including CPU beans and bean templates. It lets the user select

a desired bean or template and add it to the project.

Two filters could be applied on the bean list. They could be switched on/off by clicking on two buttons on the

bottom bar.

All/CPU• - If this filter is active, only the beans that could be used with the current target CPU derivative are

shown.

Licensed• - If active, only the beans with valid license are shown.

The Bean Selector contains the following four tabs allowing the user to see list of the bean in the following

modes:

Bean• Categories - contains all available beans. The beans are sorted in a tree based on the categories defined

in the beans. See chapter 3.2.1 Bean Categories for details.

On• Chip Peripherals - shows all beans available for the specific peripherals. All chip peripherals, sorted by

name, are listed in the appropriate CPU folder, depending on which peripheral can be used. Current target

CPU bean is displayed at the top (only if a target CPU bean is selected).

There are three different icons of peripheral folders which depends on the usage of the peripheral.

If- the peripheral is fully available, the folder is displayed by yellow icon.

If- the peripheral is partially used, the folder is displayed by light blue icon.

The- fully used peripheral is displayed by blue icon.

the Bean Selector provides the "On Chip Peripherals " view for the users, that are not familiar with the

beans functionality yet (but they know the chip peripherals). This page contains all on-chip peripherals of the

selected CPU and for each peripheral list of supported beans. So it's very easy to find bean, that supports

functionality of the selected peripheral.

Alphabet• - shows alphabetical list of available beans. The user can speed-up searching the right bean typing
the start of the bean name on the keyboard . All/CPU and license filters could be used here like on the

other Bean Selector tabs.

Keywords• - shows alphabetical listing of keywords related to the internal peripherals. The list of available

beans that could use the keyword-related peripheral can be found under each keyword. All/CPU and License

filters are used here as well.

The icon means that there is an available license for the bean. If the icon is displayed as a "greyed" icon, it

means that for the selected bean a valid license is not available.

The bean names are colored black and the bean template names are colored blue. By double-clicking on the

- 37 -

Processor Expert User's manual User Interface



bean it is possible to insert the bean into the current project. The description of the bean is shown in a hint.

The button Quick Help shows short information about function of the bean. The Quick Help is displayed as a

part of the Bean Selector window and is updated when the user selects another bean in the tree.

Folder Pop-up menu

The pop-up menu is available by clicking the right mouse button on a folder.

Expand/Collapse• - expands or collapses the folder

Expand• all - expands the folder and all its subfolders

Collapse• all - collapses the folder and all its subfolders

Help• on Bean Selector- displays documentation for the Bean Selector.

Bean Pop-up Menu

The pop-up menu is available by clicking the right mouse button on a bean.

Add• the bean to the current project - adds the bean to the current project.

Delete• selected template- removes the selected template from the Bean Selector.

Help• on Bean- displays bean documentation.

Help• on Bean Selector- displays documentation for the Bean Selector.

Bean Selector Pop-up Menu

The pop-up menu is available by clicking right mouse button on the area inside the Bean Selector window

Update• - updates new beans and templates to the tree according to the appropriate category in the Bean

Selector window.

Help• on Bean Selector - displays documentation for the Bean Selector.

Target CPU Folder Pop-up Menu

The pop-up menu is available by clicking the right mouse button on the Target CPU folder in the On Chip

Peripheral mode. This menu is the same as the pop-up menu for the target CPU in the project panel. See chapter

2.3 Project Panel for details. for details.

Peripheral Folder Pop-up Menu

The pop-up menu is available by clicking right mouse button on the peripheral in the On Chip Peripheral mode.

Expand/Collapse• - expands or collapses the folder

Expand• All - expands the folder and all of its subfolders

Collapse• All - collapses the folder and all of its subfolders

Show• Peripheral Structure - opens the peripheral's structure view - (it is supported for I/O ports, timer's

counters, serial ports. It is also supported for devices working in several modes in the CPU block diagram. A

list of represented devices for these modes is displayed.

Rename• Peripheral - allows the user to rename the selected peripheral. It is supported for I/O ports and

pins, watchdog and timers (counters, compare and capture registers, free running devices), A/D converters

and A/D channels, CAN, serial ports. See details for renaming peripherals.

- 38 -

Processor Expert User's manual User Interface



Show• Peripheral Usage - shows which part of the peripheral is used by the application (visible after code

generation). It is supported for I/O ports and pins, timers, A/D converters and A/D channels, CAN, serial

ports, watchdog, internal memories (EEPROM and FLASH). See chapter 2.15 Peripherals Usage for details.

Show• Peripheral Initialization - shows initialization values of all "control, status and data" registers. It is

supported for all devices displayed on CPU package. See chapter 2.14 Peripheral Initialization for details.

Search• Related Info in CPU PDF Documentation displays the PDF Search window and finds information

about the peripheral in the appropriate CPU documentation. It is for possible to search for any keyword in

the CPU documentation based on the original manufacturer's CPU manual. (This item is available on the

package and on the CPU block only.) See chapter 2.17 PDF Search for details.

View• CPU Block Diagram - displays the CPU block diagram in the Target CPU window.

Help• on Bean Selector - displays documentation on the Bean Selector

Figure 2.7 - Bean Selector with Quck Help panel

2.5. Inspector

Processor Expert | View | Inspector

Inspector is universal window, which allows to view and edit attributes of the object selected in the Project Panel.

It could be a Bean, Configuration, User module or Peripheral Initialization bean. Inspector can work in these

modes depending on the type of inspected object.

Bean• Inspector - provides access to Properties, Methods, Events, and Comments for the beans, arranged in

switchable pages. See chapter 2.5.3 Bean Inspector for details. Bean Inspector for CPU bean offers

additional Build options (if a target compiler is selected) and Used peripherals pages.

Configuration• Inspector - Provides access to settings of a configuration. See details in chapter

Configuration Inspector.

User• module inspector - Provides access to settings of a user module.

- 39 -

Processor Expert User's manual User Interface



Figure 2.8 - Example of the Inspector Window content

Window Columns

Inspector window contains the four columns:

Item• status

- green checkmark - item setting is correct

- red exclamation - item setting is not correct. Items that cause errors or warnings are written in

magenta color. See description in the last column or the Error Window.

- plus or minus - item is a group of settings that can be expanded/collapsed.

- light background - item is version specific. See chapter 2.5.3.3 Version Specific Items for details.

Item• names - items that are to be set are listed in the second column of the inspector. Groups of items

describing certain features may be collapsed/expanded by double clicking on the first line of the group. By

double clicking on a method or event item, you may open the File Editor at the position of the corresponding

method or event.

Selected• settings - the settings of the items are made in the third column. See chapter 2.5.1  Inspector Items

for list of item types.

Setting• status - the current setting or an error status may be reflected on the same line, in the rightmost

column of the inspector.

Read only items

Any item can be presented as read-only so the user could not change its content. Read only values are gray.

Menu

The following items are available:

Bean• (enabled in Bean Inspector Only)

Template- 

Restore- default template settings - restores settings of the template.

Save- bean settings as template - invokes template editor. See details on Bean Templates here.

Active- template - Shows list of currently available templates for the bean with currently active

template selected.

Change- bean icon - allows the user change the bean icon.

Autoconnect- - auto connects the bean to the CPU.

Disconnect- - disconnects the bean from the CPU.

Items• Visibility - see the chapter Items Visibility for more information about view modes.

Help• 

Help- on Selected tab - displays documentation for the current tab.

- 40 -

Processor Expert User's manual User Interface



Help- on Inspector - displays Bean Inspector documentation.

Help- on Bean(enabled in Bean Inspector Only) - displays documentation for the selected bean.

Embedded- Beans Page - displays Embedded Beans documentation.

Navigation• buttons allow the user to browse over the previously inspected beans.

Peripheral• initialization button (present in Bean Inspector Only) - This button will show the Peripheral

initialization. If the button is pushed, the peripheral initialization window is attached to the Bean inspector

window.

View mode buttons

They are placed at the bottom of the window (Basic, Advanced, Expert). They allow users to switch complexity

of the view of the bean's items. See chapter 2.5.2 Items Visibility for details.

Pop-up Menu

This menu is invoked by a click of the right mouse button on the specific inspector item. The menu contains the

following commands:

New• Item Into List - adds a new item before the currently selected one. This item is available only for the

list-type properties.

Delete• Item From List - deletes a selected item from the list. This item is available only for the list-type

properties.

Move• List Item Up - Moves the selected row towards the start of the list. This item is available only for the

list-type properties.

Move• List Item Down - Moves the selected row towards the end of the list. This item is available only for

the list-type properties.

Help• on the Item - shows the appropriate help page for the selected item.

2.5.1. Inspector Items

The following types of the items could be found in the Inspector

Alphabetical list

Descriptions

Boolean• Group - A group of settings controlled by this boolean property. If the group is enabled, all the

items under the group are valid; if it is disabled, the list of items is not valid. Clicking the + sign will

show/hide the items in the group but doesn't influence value nor validity of the items.

Boolean• yes / no - The user can switch between two states of the property using a round icon .

The Generate code / Don't generate code settings of methods and events works the same way and

determines whether the implementation code for the corresponding method or event will be generated or not

(you may thus generate only the methods and events used by your application).

Enumeration• - Selection from a list of values. If the user clicks the arrow icon ( ), a list of the possible

- 41 -

Processor Expert User's manual User Interface



values for the property is offered.

Enumeration• Group - A list of items. Number of visible (and valid) items in the group depends on chosen

value. Clicking the arrow icon ( ) will show a list of the possible values of the property. Clicking the + sign

will show/hide the items in the group but doesn't influence value nor validity of the items.

File/Directory• Selection - allows to specify a file or directory. Clicking the icon will open a system

dialog window allowing to choose a file/directory.

Group• - A list of items which can be expanded/collapsed by clicking on the plus/minus icon or by double

clicking at the row. Values of the items in the group are untouched.

Integer• Number - The user can insert a number of a selected radix. Radix of the number could be switched

using the icons (D = Decimal ,H = Hexadecimal, B = Binary). Only reasonable radixes are offered

for the property. If the radix switching icon is not present, Processor Expert expects the decimal radix.

Link• to inherited bean - The arrow icon switches the inspector to the ancestor bean that is inherited by

the current bean. The down-arrow button allows to change the ancestor from the list of possible ancestor.

See chapter 3.13 Bean Inheritance and Bean Sharing for details.

Link• to shared bean - The dialog button switches the inspector to the shared bean that is used by the

current bean. The down-arrow button allows to change the bean from the list of the available beans. See

chapter 3.13 Bean Inheritance and Bean Sharing for details.

List• of items - A list of items may be expanded/collapsed by clicking on the plus/minus button in the left

side of the row or by double clicking on the row. The user may add/remove items by clicking on the

plus/minus button. The items in the list can be arranged using a related pop-up menu commands.

Peripheral• selection - The user can select a peripheral from the list of the available peripherals. The

peripheral that are already allocated have the bean icon in the list. The properties that conflicts with the bean

- 42 -

Processor Expert User's manual User Interface



settings have the red exclamation mark.

Real• Number - the user can insert any real (floating point) number.

String• - Allows to enter any text or value

String• list - Clicking the dialog button will open the simple text editor that allows to enter an array of text

lines.

Time,• Date - Allows to setup the Time/Date in a format according to the operating system settings.

Timing• settings - Allows a comfortable setting of the bean's timing. The timing dialog box gets opened

when clicking on . See chapter 2.5.3.1 Dialog Box for Timing Settings for details.

2.5.2. Items Visibility

Processor Expert supports selectable visibility of bean items. Each item is assigned a predefined level of

visibility. Higher visibility level means that items with this level are more special and rarely used than the

others with the lower visibility level. Bean Inspector displays only items on and below the selected level. It could

help especially beginners to set only basic properties at first and do optimization and improvements using

advanced and expert properties or events later. There are three visibility levels:

Basic• view - key items that have no default value and must be set for each bean, for example peripherals. To

view these items select command Inspector | Items Visibility | Basic view.

Advanced• view - key items that should be set or that are usually set (including necessary items) To view

these items select command Inspector | Items Visibility | Advanced view.

Expert• view- maximum visibility level. All items that can be changed including rarely used items. To view

these items select command Inspector | Items Visibility | Expert view.

See also the main page of the Bean Inspector chapter for more information how to switch view modes.

Note: If an error occurred in a property with a higher visibility level than the level currently selected, this error

nevertheless will be displayed.

- 43 -

Processor Expert User's manual User Interface



2.5.3. Bean Inspector

Bean inspector is one of the Inspector window variants. It allows to setup Properties, Methods, and Events of a

bean. Use command Help | Help on Bean from Bean Inspector menu to see documentation for currently opened

bean.

Note: Property settings influencing the hardware can often be better presented by the CPU package view using

Target CPU window. See chapter 2.7 Target CPU Window for details.

Figure 2.26 - Bean Inspector Window

The Comments page allows the user to write any comment about the bean or setting used.

The Build options page is present only in the CPU bean and it provides access to the settings of the compiler

(or debugger) selected in Project Options. These settings are different for each compiler (or debugger), and are

reset every time the compiler (or debugger) is changed.

The Used page shows list of the CPU bean resources. The user can also manually block individual resources for

using them in Processor Expert.

The page consists of the three columns:

First• shows the name of the resource. Resources are in groups according to which device they belong to.

Second• column allows the user to reserve resource (for example pin) for external module. Click on icon

to reserve/free a resource. Reserved resource could not be use in Processor expert any more.

Third• column shows the current status of the resource and the name of the bean which uses it (if the resource

is already used).

For menu and view mode description and other common Inspector window features see chapter 2.5  Inspector

and 2.5.1  Inspector Items.

- 44 -

Processor Expert User's manual User Interface



Pin sharing

Some beans allow sharing of the pins. This ability is indicated by a presence of the pin sharing button in the

pin selection property line. See chapter 3.14 Pin Sharing for details.

Bean level

The Bean Level is displayed at the bottom of the window besides the view mode buttons. It describes the amount

of the peripheral abstraction and a cross platform portability.

High• Level Beans - highest level of peripheral abstraction. An application built from these beans can be

easily ported to another microcontroller supported by the Processor Expert.

Low• Level Beans - The beans that are dependent on the peripheral structure to allow the user to benefit from

a non-standard features of a peripheral.

Peripheral• Initialization Beans - These beans are on the lowest level of abstraction. An interface of such

beans is based on the set of peripheral control registers. These beans cover all features of the peripherals and

were designed for initialization of these peripherals (contain only one method "Init" and no events).

Please see chapter 3.2.1  Bean Categories for more information.

2.5.3.1. Dialog Box for Timing Settings

The Timing dialog box provides a user-friendly interface for the settings of bean timing features. When

clicking on the button of a timing item in the Bean Inspector, the timing dialog box is displayed.

Before you start to edit bean timing you should set:

Target• CPU in the Project Panel

Used• peripherals in the bean's properties

Requested• prescaler in the bean's properties, if supported

Supported• speed modes in the bean's properties

Options

Upper left panel

Runtime setting
determines how the timing setting can be modified in runtime.

Runtime setting is not supported in the BASIC view mode.

Runtime setting type:

fixed• value: it will not be possible to change the timing setting of the bean in runtime.

from• a list of values: it will be possible to select a new value among predetermined values from the list (use

the Add and Delete buttons to control number of values in the list). Each value in the list defines a mode and

you can switch between them using method Set???Mode (name of the method depends on the bean).

from• interval: it will be possible to select a new value within a predetermined interval.

This Runtime setting type requires runtime calculations to change time setting of the bean. The runtime

setting type may not be supported on small microcontrollers.

The modification of timing settings at runtime is done using Bean methods. Some of them will be enabled only if

you select corresponding Runtime Setting Type.

Upper right panel

Value

- 45 -

Processor Expert User's manual User Interface



currently edited time: initialization value, value in any mode from the list or limit of the interval.

Requested• value: write here the value you wish to set and select the unit in the Units list box. If you select

the With value check- box, the value is recomputed at every unit change.

Tip: Double- click on the requested value to see all supported values close to the selected one.

It• is possible to specify desired precision of the timer settings by using one of the following settings (which

one is used depends on the type of the timing) :

Error- allowed - This field allows specifying the tolerated difference between real timing and the

requested value. The % check-box allows the user to set the degree of precision as a percentage of the

requested value.

Min.- resolution - Minimal resolution of timer ticks. This setting is used for setting interval or capture

bean timing. Allows the user to specify maximal acceptable length of one tick of the timer. In the case of

interval settings the % check-box (if it is present) allows the user to set the degree of precision as a

percentage of the low limit value. Otherwise the % value is related to the requested value.

Adjusted• value , Prescaler and Error: Shows the real value computed from chosen on-chip peripheral

settings, selected Prescaler value and the difference between the value selected by the user and the real value.

Status• line displays status of the timing setting. If the requirements are impossible to meet, a red error

message is displayed.

Bottom panel

Possible settings
values supported by the Target CPU for the selected peripheral.

Closest• values: supported time values that are the closest to the requested value.

Possible• in high (and/or low, slow) speed mode: all correct settings in high/low/slow speed mode.

Tip: Click on any value to see all supported values close to the selected one.

Overclocked• (check-box below for information only): if checked, the bean supports extension of the

hardware timing by the 8-bit software counter.

Intersection• of speed modes (check-box below is visible only in EXPERT view mode) if selected the

Possible settings box contains only values which are available in all speed modes supported by the bean.

Note: Speed modes and related settings are supported only in EXPERT view mode.

Prescaler

It is possible to set a requested prescaler value in several beans. You can choose "Autoselect" for automatic

selection (default value).

Some peripherals support internal prescalers - any other peripheral can divide its clock. You can set this special

prescalers in the bean properties - item Prescaler (if supported). The internal prescaler are not used by automatic

selection. Internal prescaler peripherals can be selected in other beans as internal prescaler but cannot be used as

a peripheral (as an interrupt source).

- 46 -

Processor Expert User's manual User Interface



Figure 2.27 - Timing Settings Dialog

2.5.3.1.1. Syntax for the Setting of Timing Features in the Bean Inspector

In timing data fields, it is necessary to type not only a value (integer or real number) but also the unit of that

value.

Supported units

microseconds• - the value must be followed by us

milliseconds• - the value must be followed by ms

seconds• - the value must be followed by s

CPU• ticks - the value must be followed by CPU crystal/oscillator ticks

Hertz• - the value must be followed by Hz

kilohertz• - the value must be followed by kHz

megahertz• - the value must be followed by MHz

bit/second• - the value must be followed by bits

kbit/second• - the value must be followed by kbits

Example

If you want to specify 100 milliseconds, enter 100   ms

- 47 -

Processor Expert User's manual User Interface



2.5.3.2. Defaut Values for Properties

Some properties can have a global default value. Once you enter the value for the property and you confirm that

it will be the default value for the property then it will be used automatically in the future.

If you open a project with different settings or change the value of the property in the Bean Inspector, a

Processor Expert automatically offers the following options:

use• new value as default value - remember the newly entered (or just loaded) value as the new default value

(change default value),

use• my default value - cancel changes (discard loaded value) and use previous default value,

use• new value and do not change default value - use the newly entered (or just loaded) value and do not

change the default value,

do• not use default value for this item - permanent settings, never use default value for this property,

use• always default value for this item during project loading - permanent settings , do not display this

dialog and always use the default value during project loading and template creation.

Note: This item is accessible only during project loading.

Permanent settings or default values can be removed in Environment Options.

Figure 2.28 - Changing the Default Value

2.5.3.3. Version Specific Items

The Version specific items (properties, methods and events) are displayed only for CPU derivatives that support

it. These items cover the special capabilities of the CPU and they are not present for all CPUs.

The version specific item is displayed as a highlighted field in the first column of the Bean Inspector. See the

following picture. There are two items with this feature:

Some items of the bean are displayed as mirrored items from the CPU bean or global settings. The global setting

means that it is possible to set the item in any bean where the item is available and the setting is used for all

appropriate beans. The items are visible if they have any relation to the bean settings. The information about the

mirroring is visible in the hint of the item.

- 48 -

Processor Expert User's manual User Interface



Figure 2.30 - Hint With Version Specific Info

2.5.4. Configuration Inspector

Configuration Inspector is a variant of a Inspector Window. It shows the settings that belong to one

configuration. See chapter 2.5.4 Configuration Inspector for details. It could be invoked from configurations

pop-up menu in the Project Panel . Click on the configuration with the right button and choose Configuration

Inspector.

Optimization settings

The following setting should be used when the code is already well debugged. These settings could increase

speed of the code, but the generated code is less protected for the unexpected situations and finding errors could

be more difficult.

Ignore• range checking - This option can disable generation of the code, that provides testing for parameter

range. If the option is set to "yes", methods do not return error code ERR_VALUE neither ERR_RANGE. If

the method is called with incorrect parameter, it may not work correctly.

Ignore• enable test - This option can disable generation of the code, that provides testing if the

bean/peripheral is internally enabled or not. If the option is set to "yes", methods do not return error code

ERR_DISABLED neither ERR_ENABLED. If the method is called in unsupported mode, it may not work

correctly.

Ignore• speed mode test - This option can disable generation of the code, that provides a testing, if the bean

is internally supported in the selected speed mode. If the option is set to "yes", methods do not return error

code ERR_SPEED. If the method is called in the speed mode when the bean is not supported, it may not

work correctly.

Use• after reset values - This option allows Processor Expert to use the values of peripheral registers which

are declared by a chip manufacturer as the default after reset values. If the option is set to "no", all registers

are initialized by a generated code, even if the value after reset is the same as the required initialization

value. If the option is set to "yes", the register values same as the after reset values are not initialized.

- 49 -

Processor Expert User's manual User Interface



2.6. Error Window

Processor Expert | View | Error window

This window displays errors, warnings, and hints that are found during:

project• checking

code• generation,

running• of an external tool.

Some errors are found right after inconsistent or incorrect data have been entered, others during the code

generation of a project. The single messages mention the bean where the error was found. If an error concerns

two beans (where conflict results for example from using the same on-chip peripheral), the error will be

attributed to both beans.

If the user clicks the right mouse button a pop-up menu is shown allowing user to delete either tools or code

generation errors, warnings and hints in order to improve the readability of the Error window.

Figure 2.31 - Processor Expert Error window

Pop-up Menu

The pop-up menu invoked by a right mouse button click contains the following items:

Delete• All Tool Errors, Warnings and Hits - removes all tool errors, warnings and hints listed in the error

window

Delete• All code generation errors, warnings and Hints - removes all code generation errors, warnings and

hits listed in the Error window

Copy• to Clipboard - copies the whole content of the window as a text to the clipboard.

Note: This command can be very useful in the case of contacting our support personnel with a bean setup

issue.

Help• - display documentation

- 50 -

Processor Expert User's manual User Interface



2.7. Target CPU Window

Processor Expert | View | Target CPU Package
Processor Expert | View | Target CPU Block Diagram
Processor Expert | View | Target CPU Structure

This window displays selected target CPU with its peripherals and pins (possible data directions of single pins

are indicated by blue arrows on the CPU package when a bean uses these pins). Several display modes are

supported. It is possible to switch the display mode by pushing buttons in the left side menu of the window.

Some signals and peripherals cannot be used by the user because they are allocated by the special devices such

as power signals, external or data bus. Special devices are indicated by a special blue icons, for example . The

allocation of peripherals by special devices could be influenced by CPU properties.

The meanings of the buttons on the left side are:

• Rotates CPU - rotate the CPU 90 degrees to the right.

• Show user names on CPU package - switches the pins' and peripherals' default names (from catalog)

for user-defined names.

• Zoom in - increases the detail level of the view. The whole picture might not fit the viewing area.

• Zoom out - decreases the detail level of the view. Processor Expert tries to fit the whole picture to the

viewing area.

• Show CPU package and peripheral - switches to a realistic view of the CPU package and peripheral.

• Show BGA CPU package - This option is allowed only for CPUs with grid-array pins layout. Pins

hidden by package are shown and the peripherals are hidden.

• Show CPU block diagram - switches to a view of theCPU block diagram based on the documentation

of the MCU manufacturer.

Pins

The following information about each pin is displayed on the CPU picture:

(all pins are displayed only on the CPU package)

pin• name (default or user-defined)

icon• of a bean that uses (allocates) the pin

direction• of the pin (input, output, or input/output) symbolized by blue arrows, if a bean is connected

Pin hint contains:

number• of the pin (on package)

both• names (default and user-defined)

owner• of the pin (bean that allocates it)

short• pin description from CPU database

Bean icon hint contains:

bean• name

bean• type

bean• description

Mouse operations:

- 51 -

Processor Expert User's manual User Interface



clicking• on a bean icon selects the bean in Project panel

double• clicking on a bean icon opens its Bean Inspector

right• clicking on an icon opens the Bean pop-up menu

right• clicking on a pin opens the Periphery pop-up menu

Pin names are shortened and written either from left to right or from up to down.

Shared Pins

If a pin is shared by multiple beans, the line connecting the pin to the bean has a red color. See chapter 3.14 Pin

Sharing for details.

Figure 2.32 - Shared pin connection

On-chip peripherals

The following information about each on-chip peripheral is displayed on the CPU package:

peripheral• device name (default or user-defined)

icon• of the bean that uses (allocates) the peripheral device

Peripheral device hint contains:

peripheral• device name

owner• of the pin (bean that allocates it)

short• peripheral device description

Hint on icon contains:

bean• name

bean• type

bean• description

If a peripheral is shared by several beans (for example: several beans may use single pins of the same port), the

icon is displayed.

Note for peripherals working in several modes:
Some peripherals work in several modes and these peripherals can be represented by a several devices in the

CPU databases. For example, the device "TimerX_PPG" and "TimerX_PWM" represents TimerX in PPG and in

PWM mode. These devices can be displayed on the CPU package, but they are also represented as a single block

in the MCU block diagram.

- 52 -

Processor Expert User's manual User Interface



Mouse Operations For Individual Items

Single• click on an icon selects the bean in Project panel

Double• click on a bean icon opens its Bean Inspector and selects the property specifying the peripheral used

by the bean.

Double• click on a resource item opens the simple item structure view.

Double• click on an icon opens a selection menu with all the beans that use single parts of the peripheral.

Selecting one bean opens it in the Bean Inspector.

Right• button click on a bean icon opens the Bean pop-up menu. If the Bean Inspector is invoked from this

pop-up menu, an appropriate property allocating the used peripheral is selected.

Right• button click on an icon opens selection menu with all the beans that use single parts of the

peripheral. Selecting one bean opens the Bean pop-up menu.

Right• click anywhere else opens the Peripheral Pop-up menu

Peripheral/Pin Pop-up Menu

The following commands are available in the pop-up menu:

Show• Peripheral Initialization - shows initialization values of all "control, status and data" registers. This

option is supported for all devices displayed on a CPU package. See chapter 2.14 Peripheral Initialization

for details.

Show• Peripheral Structure - opens the peripheral's structure view - (it is supported for I/O ports, timer's

counters, serial ports. This option is also supported for devices working in several modes in the CPU block

diagram. A list of represented devices for these modes is displayed.

Show• Peripheral Usage - shows which part of the peripheral is used by the application (visible after code

generation). This option is supported for I/O ports and pins, timers, A/D converters and A/D channels, CAN,

serial ports, watchdog, internal memories (EEPROM and FLASH). See chapter 2.15 Peripherals Usage for

details.

Rename• Peripheral - allows you to rename the selected peripheral. It is supported for I/O ports and pins,

watchdog and timers (counters, compare and capture registers, free running devices), A/D converters and

A/D channels, CAN, serial ports.

Search• Related Info In CPU PDF Documentation displays PDF Search window and finds the information

about the peripheral in the appropriate CPU documentation. It is also possible to search for any keyword in

the CPU documentation based on the original manufacturer's CPU manual. (This item is available on the

package and on the CPU block only.) See chapter 2.17 PDF Search for details.

Add• Bean/Template - adds a bean or template for the appropriate peripheral: all available beans and

templates suitable for the selected peripheral are listed. The beans and templates in the list are divided by a

horizontal line. It is possible to add only beans or templates which are applicable for the peripheral. It means

that is possible to add the bean or template only if the peripheral is not already allocated to another bean or

beans. The beans/templates that cannot be added to the peripheral are grayed in the pop-up menu as

unavailable. This option is supported for all devices displayed on CPU package.

Help• on Target CPU Window - displays help for the current window

- 53 -

Processor Expert User's manual User Interface



Figure 2.33 - Target CPU - CPU and package view mode

Figure 2.34 - Target CPU - BGA CPU package view mode

- 54 -

Processor Expert User's manual User Interface



Figure 2.35 - Target CPU - MCU block diagram view mode

2.8. CPU Timing Model

Project Panel | CPU pop-up menu | View CPU Timing Model

This window presents the schematic structure of the target CPU timing stored in the database of Processor

Expert.

More details on individual items are available as hints after the mouse cursor is placed on the item's name. The

displayed prescaler values are automatically set after the reset for enabled devices.

Click plus "+" or minus "-" signs to expand or collapse the branches of the tree.

The values of all prescalers are for high speed mode. For details on speed modes please see chapter 3.3.2  Speed

Modes Support.

Some of the devices (prescalers) can select the source of its clock from multiple sources. Only one of the sources

can be active at one time - this active branch is marked with green check-mark ( ). The items with gray cross (

) with the same name represent the inactive branches. For example see the RTIJoin prescaler on the figure

below.

The window can operate in two modes according to the CLOCK field setting:

From• CPU clock source to individual peripherals
The prescalers and clock-driven CPU devices are ordered in a tree structure, starting with the main branch

which represents the main clock source (PLL, X-tal etc...).

- 55 -

Processor Expert User's manual User Interface



Figure 2.36 - CPU Timing Model Window

From• selected peripheral to CPU clock source
The selected peripheral is the root of a tree showing the current sequence of the prescalers form the device to

the main clock source. Each sub-node represents a source of the clock used for its parent.

Figure 2.37 - CPU Timing Of Selected Peripheral

2.9. Resource Meter

Processor Expert | View | Resource Meter

The Resource Meter shows the current status of a chip resource usage (or availability).

Note that if a peripheral is allocated, all its parts are reserved. For example if you use the 8-bit I/O port, all the

I/O pins of the port are allocated and it is not possible to use them in other beans.

Pins• usage meter shows pins' usage. In general, there are always some pins used, such as the power supply

pin.

Port• usage meter shows ports' usage. A port is considered allocated if a part of it is used, or if its pins are

allocated to another device.

Compare/Reload• meter shows the allocation of the timer compare registers (depending on CPU type). If it

is possible to combine several smaller registers into one large, then the allocation of one of the smaller ones

means allocation of the large one and the allocation of the large one means allocation of the two smaller ones.

Capture• regs shows timer capture registers usage.

- 56 -

Processor Expert User's manual User Interface



Communication• shows the allocation of the serial communication channels (including also CAN).

A/D• channels shows the allocation of the A/D converter channels.

By placing the mouse over a resource meter field, you may get a hint that provides details about which resources

are used concerning this field.

Figure 2.38 - Resource Meter Window

2.10. Memory Map Window

Processor Expert | View | Memory Map

This window shows the CPU address space and internal and external memory mapping. Detailed information

for an individual memory area is provided as a hint when the user moves cursor over it.

Legend:

white: non-usable space

dark blue: I/O space

blue: RAM

light blue: ROM, OTP or Firmware

cyan: FLASH memory or EEPROM

black: external memory

The address in the diagram is increasing upwards. The sizes of individual memory areas blocks drawn in the

window are different from the ratio of their real sizes to improve readability of the information (Small blocks are

larger and large blocks are smaller).

The black line-crossed areas show the memory allocated by a bean or compiler. The address axis within one

memory block goes from the left side to the right (i.e. the left side means start of the block, the right side means

the end).

Figure 2.39 - Sample Of Used Part Of The Memory Area

- 57 -

Processor Expert User's manual User Interface



Mouse Actions

If you move the mouse pointer to any part of the CPU address space, a detailed description of the chosen part

will be displayed in the hint.

Double click on the used (line-crossed) memory area will open the CPU bean inspector window with the

selected definition for this area (same as the Edit Usage pop-up menu command).

Pop-up Menu

Edit• Usage - opens a Bean Inspector window that allows to customize the memory setup for the selected

area. This command is available only for used areas (line-crossed).

Display• Mode

Full- - displays all items.

Only- Memory - displays only Flash, RAM and ROM.

Summary• - displays window with summary of memory usage (percentage and absolute view).

Help• - shows this page.

Figure 2.40 - Sample Memory Map Window

- 58 -

Processor Expert User's manual User Interface



2.11. CPU Types Overview

Processor Expert | View | CPU Types Overview

The CPU Types Overview dialog window provides an overview of all CPUs available in user's installation of

Processor Expert. The overview is given in the form of a tree structure going from CPU producers to CPU

families and finally CPU variants. The schematic picture of the currently selected CPU variant is displayed in the

Target CPU window.

A• mouse click on the close button will close the window.

A• mouse click on the help button will open this help page.

If you click with the right mouse button on the window, a pop-up menu appears:

Add• CPU into project - adds the selected CPU into the project (it will appear in the Project Panel).

Expand/Collapse• - expands/collapses the next level of the tree structure or packs the current one.

Expand• all - expands the entire tree structure.

Collapse• all - expands the entire tree structure.

Help• - opens the help page concerning this window.

Figure 2.41 - CPU Types Window

2.12. CPU Parameters Overview

Processor Expert | View | CPU Parameters Overview

You may get the technical features of a CPU by selecting the CPU Parameters Overview command of the

View menu. The complete database then appears together with a query window. By specifying requirements on

technical features, you may filter the database in order to display only relevant CPUs. If you press OK, you will

get the list of CPUs that meet your requirements. If you press All , all the CPUs supported by your version of

Processor Expert will be listed.

- 59 -

Processor Expert User's manual User Interface



Figure 2.42 - CPU Query Dialog

Description

The CPU Parameters Overview windows displays the list of CPUs, including their technical features:

CPU• type - CPU type

Producer• - CPU producer

Family• - CPU family

Clock• - CPU xtal clock

Dual• clock - if CPU does have a dual clock

Operating• Temperature - CPU operating temperature

#pins• - number of pins on CPU package

#IO• ports - number of I/O ports and I/O pins

#timers• - number of timers, compares and captures

#A/D• - number of A/D channels and converters. For example 12/1 means 12 A/D channels and 1 A/D

converter.

#serial• - number of asynchro/synchro serial channels

#CAN• - on-chip CAN channels

Watchdog• - on-chip watchdog

#Special• - Special features and devices

RAM• - on-chip RAM size

ROM• - on-chip ROM size

EPROM• - on-chip EPROM size

FLASH• - on-chip FLASH size

OTP• - on-chip OTP size

Power• supply - power supply voltage

Storage• - CPU storage temperature

- 60 -

Processor Expert User's manual User Interface



Note: Memory sizes are in minimal addressable units (bytes, words).

If you right-click on the window, a menu appears allowing you to add the selected CPU to the current project or

to refine your previous query.

Figure 2.43 - Results of The CPU Query

2.13. List of Installed Beans with Additional Information

Processor Expert | View | Installed Beans Overview

This window contains information about installed beans in the current version of Processor Expert:

BEANS• 
All installed beans including CPUs and user-created beans are listed in the report. Placing the mouse cursor

on the bean's name will display the hint containing the detailed information about the latest bean version.

See menu | View | Bean Type for bean type selection.

Bean• Info

The amount of the information shown in this column can be controlled via View | Bean info menu.

Note: This information is also displayed as a hint on the bean.

Bean- description

File- format and access (encrypted, full source, compressed)

Author- of the bean

version- 

List- of revisions of the bean. Each revision contains a version number, date and author of the revision.

Drivers• 
Installed bean's drivers.

Driver• Info

The amount of the information shown in this column can be controlled via View | Driver info menu.

Placing the mouse cursor on the file name will display the detailed information about the latest bean driver

version.

- 61 -

Processor Expert User's manual User Interface



Status- - file format and access (encrypted, full source, compressed)

Author- of the bean's driver

Current- version of the bean's driver

Init.- date - date of creation

Last- modification - date of last modification

List- of revisions of the driver. Each revision contains a version number, date and author of the revision.

The contents of the window can be configured using commands in menu View . It is possible to view this

window also in HTML format using command View | As HTML.

Menu

View• 

Bean- Type

all- - displays all beans.

Beans- only - hides CPU beans.

CPUs- only - displays CPU beans only.

Bean- Info

all- - displays information about the bean.

basic- - displays basic information about the bean only.

none- - hides information about the bean.

Drivers- 

all- - displays all bean's drivers.

none- - hides all drivers.

subdirectories- - displays drivers from a selected subdirectory.

Driver- Info

all- - displays the most information about bean's drivers.

basic- - displays only a basic information about the bean's driver.

none- - hides information about bean's drivers.

Implementation- 

display- all - shows all beans.

Hide- beans without any selected driver - shows only beans which contain the selected driver.

Hide- beans with any selected driver - shows only beans which do not contain any selected driver.

As- HTML - display this table in default HTML browser.

Temporary HTML file will be removed from the disk after closing Processor Expert.

Help• 

Help- on Bean- displays help for currently selected bean (except CPU beans).

Help- on this Window - displays this page.

- 62 -

Processor Expert User's manual User Interface



Figure 2.44 - List of Installed Beans

2.14. Peripheral Initialization

Processor Expert | View | Peripheral Initialization

The Peripheral Initialization window shows overview of peripheral initialization settings for the current CPU. It

displays initialization values of all control, status and data registers of selected peripheral including single bits.

The user can also see peripheral schematic diagram . Peripheral Initialization can be invoked from the View

menu or from Target CPU window or using a Peripheral Initialization button in the Bean Inspector.

If the Peripheral Initialization window is docked with the Bean Inspector window, the peripheral is automatically

changed according to the peripheral selection in the bean selector. Automatic changes of the peripheral can be

disabled using the lock icon .

Notice: The Peripheral Initialization and Peripheral Usage are both only one window in two different modes.

These windows could not be displayed both at once.

The initialization information reflects:

CPU• default settings - when the peripheral is not utilized by Embedded Bean

Embedded• Bean settings - when the peripheral is utilized by the Embedded Bean and the bean settings are

correct. Peripheral Initialization Inspector shows initialization as required by Beans settings.

Registers

There is a value displayed in the middle column which will be written into the register or bit by the generated

code during the initialization process of the application. In case the peripheral is allocated by a bean and the

setting of the bean is incorrect, then the initialization values are not displayed in the Peripheral Initialization

window. Instead, a value of the register (or bit) after reset is displayed in the right column. The after-reset values

can contain also a characters with special meaning. The list and description of these characters is displayed as a

hint when the mouse cursor is placed on the header of the registers table.

The values of the registers can be displayed in hexadecimal, decimal or in binary form. In case the value of the

register (or bit) is not defined, an interrogation mark "?" is displayed instead of the value. In this case it is

possible to display the value of the register in binary form only.

- 63 -

Processor Expert User's manual User Interface



Figure 2.45 - Register List in the Peripheral Initialization window

Register details command from pop-up menu of a register (invoked by the right button click) opens a window

containg detailed information for the register.

Figure 2.46 - Register Content Details

Changes Highlighting

The user can watch reflections of user settings to Embedded Bean Properties directly in CPU peripheral registers

and bits. The registers influenced by a last bean settings change are highlighted with a green color (see the

previous two pictures for example). The highlighting works only in the case that the bean was set-up correctly

before the change was made and the new setup is correct as well and there is no error reported in a bean settings.

If there is an error in a bean settings and no other bean is influencing the register, the after-reset values are are

shown.

Menu

View• 

Sort- Registers by Address - If this item is checked, registers are sorted in list by their address.

Otherwise they are sorted by name.

Group- Registers - If this item is checked, groups of numbered registers with the same name are shown

as expandable folders. The name of each folder is the same as the name of the registers with numbers

replaced by 'xx'.

Show- Unused Bits - This option enables/disables displaying the registers' bits unused by the

manufacturer. When it is enabled, the unused bits are listed with the name 'unused'.

Expand- all - expands the folder and all its subfolders.

Collapse- all - collapses the folder and all its subfolders.

Help• 

Help- - displays documentation.

- 64 -

Processor Expert User's manual User Interface



Peripheral schematic

It is possible to switch peripheral initialization window style between register list, peripheral schematic and both

of them using registers , schematic and both buttons. Schematic and both buttons are present only when the

schematic for the current peripheral is provided.

Schematic diagram of the peripheral contains names of the control registers. Highlighting of changes of a

related bean settings works also in the schematic mode.

If• the user places mouse cursor on the register name, the hint containing register description and address is

shown.

When• the user clicks the register name with the left mouse button, new dialog window containing detailed
information (including initialization value) for the register is shown. The register bits affected by a changes

are highlighted.

Notice: Peripheral schematics view is available only in the 56F800/E version.

Figure 2.47 - Schematic Diagram of the Peripheral

2.15. Peripherals Usage

Processor Expert | View | Peripherals Usage

The Peripheral Usage window shows the current status of on-chip peripherals usage in detail.

The names of the beans using peripherals appear in the third column, next to the corresponding peripheral

names. When the mouse is over a peripheral name, a short description of the peripheral appears as a hint.

Note that if a peripheral is allocated, all its parts are reserved. For example if you use the 8-bit I/O port, all the

I/O pins of the port are allocated and it is not possible to use them in other beans.

Notice: The Peripheral Initialization and Peripheral Usage are both only one window in two different modes.

These windows could not be displayed both at once.

The following items are available:

I/O• page shows I/O pins' and ports' usage. If a pin/port is allocated to a bean, the I/O properties of the bean

are displayed below the pin/port's name (unless all the pins of a port are used by one bean, in which case, the

properties appear under the name of the allocated pins).

- 65 -

Processor Expert User's manual User Interface



Interrupts• page shows interrupt vectors usage. If an interrupt vector is allocated to a bean, the bean's name

and the interrupt priority are displayed below the vector's name.

Timers• page shows the allocation of the timers.

Channels• page shows A/D, CAN and serial channels usage.

Menu

View• 

Sort- registers by address, Group registers, Show Unused Bits - These commands are not useful and

available in the this mode of the window.

Expand- all - expands the folder and all its subfolders.

Collapse- all - collapses the folder and all its subfolders.

Help• 

Help- - displays documentation.

Figure 2.48 - Peripheral Usage Window

2.16. File Editor

About File Editor

File editor is the Processor Expert internal editor allowing to

Edit• files - All common text editor functions are available for comfortable work with the source code.

View• files - Editor is opened in a read only mode (it's shown in the title of the window).

Compare• files - A visual file-comparison mode with two panels showing a differences between two files.

Notice: The Edit and View modes of the internal editor are not used in the CodeWarrior plugin. Internal editor

is for these operations fully replaced by the native CodeWarrior source code editor.

- 66 -

Processor Expert User's manual User Interface



Meaning of Buttons:

• Switches between module Extensions - switch between assembler implementation of the driver and

header file of the module or implementation (body file) of the module.

Note: it is available only if it is allowed in the Editor Options.

• Open file - opens a file.

• Save file - saves the currently displayed file.

• Save all - saves all opened files (if they were edited).

• Close file - closes the currently displayed module (file).

• Print file - prints the currently displayed file on a printer.

• Editor options - editor settings.

• Help - opens Help.

• Change font - changes the font of File Editor.

• Undo - restores the state of a file before the last change.

• Redo - restores the last change.

• Find - finds a string in the currently displayed file.

• Replace - replaces a string with another string.

Mouse Actions

To• move editor cursor to a specific place, click the left button on the desired place in a text.

To• select a text, move mouse and hold the left button.

To• move the selected text to a different location, drag a selected text with left button pressed.

To• invoke editor pop-up menu, click the right button.

To• scroll editor view, move mouse with middle button pressed.

To• close an opened file, click the middle button on the tab with a file name (when multiple files are open).

To• select a square text block inside the window press and hold the ALT key and left mouse button while

moving the mouse.

To• jump on a specified line number, click the first status-bar field containing a line number information.

To• place a method invocation to the source code, drag the method from the Project Panel. See chapter 2.3

Project Panel for details.

- 67 -

Processor Expert User's manual User Interface



File Editor Pop-up Menu

To open the File Editor pop-up menu, click the right mouse button on the text area of the File Editor window.

Meanings of items:

File• 

Open- - opens a file.

Save- - saves the currently displayed file.

Save- As - saves the currently displayed file under a new name.

Save- All - saves all opened files (if files were edited.

Close- - closes the currently displayed file.

Close- all - closes all files.

Delete- - closes and deletes the currently displayed file.

Reopen- - opens a list of used files.

Print- - prints the currently displayed file on a printer.

Print- Preview ... - opens a print preview dialog. The dialog allows the user to enter printer options, set zoom

size for preview, display document margins and print the page.

Edit• 

Undo- - Restores the state of a file before the last change.

Redo- - Resumes the last change.

Cut- - Cuts the selected text to the clipboard.

Copy- - Copies the selected text to the clipboard.

Paste- - Pastes the text from the clipboard.

Clear- - Clears the selected text.

Select- All - Selects all text.

Delete- Line - Removes the current line.

Delete- word - Removes characters from the current cursor position to the end of the word (including

space).

Search• 

Find- - Displays SearchReplace dialog

Find- Next - Finds next position of a string in the currently displayed file.

Replace- - Displays SearchReplace dialog

Go- to Line - Moves the cursor to a line determined by its number.

Debug• 

Notice: Internal debugger is not available in this version.

Toggle- break - Set breakpoints on actual cursor position.

Add- watch ... - Add watch to watches list in Watches window.

Evaluate/Modify- ... - Open watch editor and enable to edit value of any variable.

Run- - Runs application in target system.

Go- to cursor- Runs application and it stops on actually selected row and breakpoint.

Stop- - Stops running application.

- 68 -

Processor Expert User's manual User Interface



Reset- - Resets application in target system.

Step- into - Steps program including subprogram call.

Step- over - Steps program without subprogram call.

Step- into in assembler - Steps program including subprogram call. After one assembler instruction

execution actual program position is displayed in window.

Step- over in assembler - Steps program without subprogram call. After one assembler instruction execution

actual program position is displayed in window.

Go- to Source Line - Opens window and goes to actual program position.

Modules- - Shows modules list into ABS file.

Disassembler- - Opens Disassembler for the current module.

Disassembler- Whole Code - Opens Disassembler for the whole program memory.

Options• 

Editor- Options... - setting of the File Editor

(see Editor Options below).

Change- Font... - change font of File Editor.

Disassembler- Op-codes

These commands in this submenu are not supported in this version of Processor Expert.

Editor• Toolbar Visible - show or hide toolbar of the File Editor. The toolbar is visible as a part of the

window or as a single panel. Clicking on the toolbar corner it is possible to place the toolbar to other side of

the window or to any other place on the screen as a floating panel.

Help• - opens documentation.

Figure 2.49 - File Editor

- 69 -

Processor Expert User's manual User Interface



File Editor Options

Preserve• cursor position during paste - keeps the current position of the cursor during a paste operation.

Use• tab character - The editor will write tabulator character after TAB key is pressed and these characters

will not be replaced by spaces.

Show• modules in separate tabs - Displays tabs for each opened module (extension). When this option is not

checked, it is possible to switch between module extensions by clicking the right mouse button on the tab of

the file and choosing the appropriate extension or by clicking on the "Switch between module extensions"

button in the toolbar menu.

Show• line numbers - Displays line numbers in the editor window.

Syntax• highlighting - Displays file content in specific colors with respect to file extension and compiler.

No• horizontal scroll-bar - Disables horizontal scroll-bar when line is not longer than window.

Outline• current line - Editor shows a frame around the current line.

Tab• size - number of spaces for tabulator.

Number• of backup copies - how many backup copies will be maintained for each saved document. The

backup files are created within the same directory as the saved file. The name of file is the same, but there is

'~' character added before the extension and a number of the backup copy is added at the end. The latest

backup file has the number 0. The bigger the number is, the older is the backup.

Hint• delay - how long will an editor hint stay on the screen.

Figure 2.50 - Editor Options

- 70 -

Processor Expert User's manual User Interface



Search And Replace Dialog

This dialog window is invoked by the pop-up menu commands Search | Find... and Search | Replace... . It

allows to specify the subject of search (or replace) and mode of operation.

Figure 2.51 - Search And Replace Dialog

Input Fields

Find• what - searched text

Replace• with - a new text that will replace the searched text in replace function.

Options

Case• sensitive - When checked, the case of letter of the searched text has to match.

Whole• words only - The searched text is found only as a whole word.

Backward• - direction of the search.

Prompt• on replace - specifies if the user will be asked about each item replacement during the replace

process. (This option is available only if any replacement text is entered).

Scope

Entire• text - Entire text will be scanned.

From• cursor - Text from cursor to the end of file will be scanned only.

Selected• text - The current selection will be scanned only.

Buttons

Find• Next - Invokes the search process. The cursor will be placed on the next occurrence of the searched

text. If the find/replace operations have not been done yet, the first occurrence of the text is found.

Find• All Files - Invokes the search process within all opened files. Places cursor in each file on the last

occurrence of the searched text within the file.

Replace• - A next occurrence of the searched text is searched and if found, it is replaced by the replacement

text.

Replace• All - All occurrences of the text within the current file are replaced by the searched text.

- 71 -

Processor Expert User's manual User Interface



Comparison Mode

File editor in this mode has two panels showing a differences between the compared files. The different lines
are highlighted with the light-yellow color and the different characters are red. The lines added to the file have a

green background. To speed-up navigation between changes, the editor offer the arrow buttons on the toolbar.

Pressing the right/left arrow button will move the cursor to the next/previous difference in the file.

This mode can be invoked automatically by Processor Expert in a case of comparing a bean modules with

previously generated ones (See chapter 2.3.4 Beans Pop-up Menus for details. ) or by a 'DIFF' button when a

changes tracking is enabled (See chapter 3.15.2 Tracking Changes in Generated Code for details.)

Figure 2.52 - The comparison mode of editor

2.17. PDF Search
Processor Expert | Help | Search in PDF Documentation of the Target CPU

The PDF Search window allows the user to quickly browse PDF documentation for an CPU. It can also be

invoked directly from the pop-up menu of the CPU bean.

- 72 -

Processor Expert User's manual User Interface



Figure 2.53 - PDF Search Window

Notice for Acrobat Reader 6.0 users: The Acrobat Reader can show the following dialog box while the PDF

files are switched within the PDF search window:

For a proper function of the PDF search the user should press the Cancel button.

Three Panels Of The Window

The• top panel allows the user to specify the searched text/expression and enable/disable additional switches

influencing the search process.

On• the left side of the widow is a narrow panel containing as a result of search a list of the pages containing

the required information. Clicking on numbers in this listing invokes the appropriate page in the Adobe

Acrobat Reader panel.

Unfortunately Acrobat Reader does not permit highlighting of any text results found on the page. You may

find on the page using the Acrobat Reader "Find" function (see Acrobat Reader toolbar).

The• Acrobat Reader (or Adobe Reader) panel shows PDF file content. This panel has it´s own toolbar

which allows you to browse within the PDF file. This panel has also an internal Find function which is useful

for locating searched phrase on the page. Using the toolbar you can print, move, and zoom in or out on the

document. More documentation about controlling the Acrobat Reader plug-in can be found in Adobe

Acrobat Reader documentation.

- 73 -

Processor Expert User's manual User Interface



Additional Switches

Case• sensitive - If this switch is enabled, all letters of searched text must exactly match the text in the

document including its case. If the switch is disabled, the case of the letters is ignored.

Regular• expressions - If this switch is enabled, the text entered as a searched phrase is treated as a regular

expression. Users can use a power of regular expressions (For example it allows using a logical or set

operators etc...). The syntax of regular expressions is a subset of commonly used Perl regular expressions.

You can find more information on regular expressions and their syntax in chapter 2.17.1   Regular

Expressions.

Our search technology uses the PdfToText program included in XPDF package. This package must be installed

in a subdirectory named XPDF. The PDF documents are being converted to the text form in the background and

stored in your TEMP folder. This conversion is executed only once for each PDF file. The conversion may take

a moment: please wait until it is finished.

It is possible to find more information about XPDF on www.foolabs.com.

The configuration for the execution of the program PDFTOTEXT.EXE must be included in the Processor
Expert Tools.

The Acrobat Reader must be installed on your computer as well.

The PDF Search feature was tested with Acrobat Reader 6.0 and 7.0

Opening CPU Documentation in Default PDF Viewer

To use a default PDF viewer instead of PDF search window for viewing the CPU documentation, set the option

Environment Options | Use default PDF viewer

2.17.1. Regular Expressions

Regular Expressions are a widely-used method of specifying patterns of text to search for. Special

metacharacters allow the user to specify, for instance, that a particular string the user is looking for occurs at the

beginning or end of a line or contains n recurrences of a certain character.

Simple Matches

Any single character matches itself, unless it is a metacharacter with a special meaning as described below.

A series of characters matches that series of characters in the target string, so the pattern "bluh" would match

"bluh'' in the target string.

You can cause characters that normally function as metacharacters or escape sequences to be interpreted literally

by 'escaping' them by preceding them with a backslash "\", for instance: metacharacter "^" matches the

beginning of a string, but "\^" match character "^", "\\" match "\" and so on.

Examples:

  foobar          matches string 'foobar'

  \^FooBarPtr     matches '^FooBarPtr'

 

- 74 -

Processor Expert User's manual User Interface



Escape Sequences

Characters may be specified using an escape sequence syntax much like that used in C and Perl: "\n'' matches a

newline, "\t'' a tab, etc. More generally, \xnn, where nn is a string of hexadecimal digits, matches the character

whose ASCII value is nn. If You need wide (Unicode) character code, You can use '\x{nnnn}', where 'nnnn' -

one or more hexadecimal digits.

  \xnn     char with hex code nn

  \x{nnnn} char with hex code nnnn

  (one byte for plain text and two bytes for Unicode)

  \t       tab (HT/TAB), same as \x09

  \n       newline (NL), same as \x0a

  \r       car.return (CR), same as \x0d

  \f       form feed (FF), same as \x0c

  \a       alarm (bell) (BEL), same as \x07

  \e       escape (ESC), same as \x1b

  Examples:

  foo\x20bar   matches 'foo bar'

  (note space in the middle)

  \tfoobar     matches 'foobar' predefined by tab

  

Character Classes

You can specify a character class, by enclosing a list of characters in straight brackets [], which will match any

one character from the list.

If the first character after the "['' is "^'', the class matches any character not in the list.

Examples:

  foob[aeiou]r   finds strings 'foobar', 'foober' etc.

  but not 'foobbr', 'foobcr' etc.

  foob[^aeiou]r  find strings 'foobbr', 'foobcr' etc.

  but not 'foobar', 'foober' etc.

 

Within a list, the "-'' character is used to specify a range, so that a-z represents all characters between "a'' and "z'',

inclusive.

If you want "-'' itself to be a member of a class, put it at the start or end of the list, or escape it with a backslash.

If you want ']' you may place it at the start of list or escape it with a backslash.

Examples:

  [-az]      matches 'a', 'z' and '-'

  [az-]      matches 'a', 'z' and '-'

  [a\-z]     matches 'a', 'z' and '-'

  [a-z]      matches all twenty six small characters from 'a' to 'z'

- 75 -

Processor Expert User's manual User Interface



  [\n-\x0D]  matches any of #10,#11,#12,#13.

  [\d-t]     matches any digit, '-' or 't'.

  []-a]      matches any char from ']'..'a'.

 

Metacharacters

Metacharacters are special characters which are the essence of Regular Expressions. There are different types of

metacharacters, as described below.

Metacharacters - line separators

  ^      start of line

  $      end of line

  .      any character in line

Examples:

  ^foobar     matches string 'foobar' only if it's

     at the beginning of the line

  foobar$     matches string 'foobar' only if it's

     at the end of the line

  ^foobar$    matches string 'foobar' only if it's

     the only string in the line

  foob.r      matches strings like 'foobar', 'foobbr',

     'foob1r' and so on

Metacharacters - predefined classes

  \w     an alphanumeric character (including "_")

  \W     a nonalphanumeric

  \d     a numeric character

  \D     a non-numeric

  \s     any space (same as [ \t\n\r\f])

  \S     a non space

You may use \w, \d and \s within custom character classes.

Examples:

  foob\dr     matches strings like 'foob1r', ''foob6r'

  and so on but not 'foobar', 'foobbr' and so on

  foob[\w\s]r matches strings like 'foobar', 'foob r', 'foobbr'

  and so on but not 'foob1r', 'foob=r' and so on

- 76 -

Processor Expert User's manual User Interface



Metacharacters - word boundaries

  \b     Match a word boundary

  \B     Match a non-(word boundary)

 

A word boundary (\b) is a spot between two characters that has a \w on one side of it and a \W on the other side

of it (in either order), counting the imaginary characters off the beginning and end of the string as matching a

\W.

Metacharacters - Iterators

Any item of a regular expression may be followed by another type of metacharacters - iterators. Using this

metacharacters you can specify a number of occurrences of a previous character, metacharacter or

subexpression.

  *      zero or more, similar to {0,}

  +      one or more, similar to {1,}

  ?      zero or one, similar to {0,1}

  {n}    exactly n times

  {n,}   at least n times

  {n,m}  at least n but not more than m times

 

So, digits in curly brackets of the form {n,m}, specify the minimum number of times to match the item n and the

maximum m. The form {n} is equivalent to {n,n} and matches exactly n times. The form {n,} matches n or more

times. There is no limit to the size of n or m, but large numbers will chew up more memory and slow down

regular expressions execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

Examples:

  foob.*r     matches strings like 'foobar',

     'foobalkjdflkj9r' and 'foobr'

  foob.+r     matches strings like 'foobar',

     'foobalkjdflkj9r' but not 'foobr'

  foob.?r     matches strings like 'foobar', 'foobbr'

     and 'foobr' but not 'foobalkj9r'

  fooba{2}r   matches the string 'foobaar'

  fooba{2,}r  matches strings like 'foobaar', 'foobaaar',

     'foobaaaar' etc.

  fooba{2,3}r matches strings like 'foobaar', or 'foobaaar'

     but not 'foobaaaar'

- 77 -

Processor Expert User's manual User Interface



Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using "|'' to separate them , so that fee|fie|foe will match any

of "fee'', "fie'', or "foe'' in the target string (as would f(e|i|o)e). The first alternative includes everything from the

last pattern delimiter ("('', "['', or the beginning of the pattern) up to the first "|'', and the last alternative contains

everything from the last "|'' to the next pattern delimiter. For this reason, it's a common practice to include

alternatives in parentheses to minimize confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression matches, is

the one that is chosen. This means that alternatives are not necessarily greedy. For example: when matching

foo|foot against "barefoot'', only the "foo'' part will match, as that is the first alternative tried, and it successfully

matches the target string. (This might not seem important, but it is important when you are capturing matched

text using parentheses.)

Also remember that "|'' is interpreted as a literal within square brackets, so if you write [fee|fie|foe] You're really

only matching [feio|].

Examples:

  foo(bar|foo)  matches strings 'foobar' or 'foofoo'.

 

Metacharacters - Subexpressions

The bracketing construct ( ... ) may also be used for defining regular expression subexpressions. Subexpressions

are numbered based on the left to right order of their opening parenthesis. The first subexpression has the

number '1'.

Examples:

(foobar){8,10}  matches strings which contain

   8, 9 or 10 instances of the 'foobar'

foob([0-9]|a+)r matches 'foob0r', 'foob1r' ,

'foobar', 'foobaar', 'foobaar' etc.

 

Metacharacters - Backreferences

Metacharacters \1 through \9 are interpreted as backreferences.

\<n> matches previously matched subexpression #<n>.

Examples:

  (.)\1+         matches 'aaaa' and 'cc'.

  (.+)\1+        also match 'abab' and '123123'

  (['"]?)(\d+)\1 matches '"13" (in double quotes), or '4'

 (in single quotes) or 77 (without quotes)etc

 

- 78 -

Processor Expert User's manual User Interface



- 79 -

Processor Expert User's manual User Interface



3. Application Design
This chapter should help users to design application using Processor Expert and Embedded Beans. You will find

here recommendations and solutions helping you to write and optimize a code effectively and properly. If you

are a beginner, please see the section Quick start that shows how to generate the code of your first project.

The following subchapters explain

Quick• Start in Processor Expert

Embedded• Beans

CPU• Beans

Predefined• Types, Macros and Constants

Typical• Usage of the Bean in the User Code

Reset• Scenario With Processor Expert

Interrupts• and Events

Implementation• Details

Configurations• 

Design• Time Checking: Consequences and Benefits

Creating• User Bean Templates

Signal• Names

Bean• Inheritance and Bean Sharing

Pin• Sharing

Code• Generation

Code• Optimizations

Embedded• Bean Optimizations

User• Changes in Generated Code

Low-level• Access to Peripherals

Import• 56800/E Project From Quick-Start

3.1. Quick Start in Processor Expert

Step 1 - Open an example

You may start learning Processor Expert by opening one of the available examples. All Processor Expert

examples are accessible from the CodeWarrior.

In• CodeWarriror for HC(S)08:

On the startup dialog click on the button Load Example Project . If the CodeWarrior is already opened,

invoke the startup dialog by using the menu command File | Startup Dialog. Then unfold the CPU family

and category folder and select an example. Then specify a name of the new project and it's location.

Processor Expert will start with a new project based on the example project.

In• CodeWarriror for HC(S)12 and 56F800/E:

To open an example select command CodeWarrior main menu | File | New... or use the New icon on the

toolbar. Select the Processor Expert Examples stationery and select a desired example. Then specify a

name of the new project. Processor Expert will start with a new project based on the example project.

Step 2 - Code generation

- 80 -

Processor Expert User's manual Application Design



After opening an example, you need invoke the code generation of the project to obtain all sources. Select

command CodeWarrior Main Menu | Processor Expert | Generate Code 'Project Name' . After the code

generation, the bean source modules will be inserted into the Generated Code folder in the CodeWarrior project

window and the event and main source modules will be inserted into the User Modules folder in the

CodeWarrior project window. Generated source code can be displayed in editor by the left mouse button

double-click on selected module in the project window.

Step 3 - More Complicated Example

Once you have learned the basic skills, you may open a more complicated example in order to get to more

advanced level of code generation.

Creating New Projects

See the chapter 4  Processor Expert Tutorials for step-by-step tutorials on creating Processor Expert projects

from the beginning.

3.2. Embedded Beans

Embedded beans encapsulate the initialization and functionality of embedded systems basic elements, such as

CPU core, CPU on-chip peripherals (for details on categories of beans delivered with Processor Expert see

chapter 3.2.1  Bean Categories), FPGAs, standalone peripherals, virtual devices and pure software algorithms.

These facilities are interfaced to the user via properties, methods and events. It is very similar to objects in

Object Oriented Programming (OOP) concept.

Easy Initialization

A user can initialize beans by setting their initialization properties in the Bean Inspector . Processor Expert

generates the initialization code for the peripherals according to the properties of the appropriate beans. User can

decide whether the bean will be initialized automatically at startup or manually by calling the bean's Init method.

Easy On-chip Peripherals Management

Processor Expert knows exactly the relation between allocated peripherals and selected beans. When the user

chooses a peripheral in the bean properties, Processor Expert proposes all the possible candidates but signals

which peripherals are allocated already (with the icon of the bean allocating the peripheral) and also signalizes

peripherals that are not compatible with current bean settings (with a red exclamation mark). In the case of an

unrealizable allocation, an error is generated.

Unlike common libraries, Embedded Beans are implemented for all possible peripherals, with optimal code. The

most important advantages of the generated modules for driving peripherals are that you can:

Select• any peripheral which supports bean function and change it whenever you want during design time.

Be• sure that the bean setting conforms to peripheral parameters.

Choose• the initialization state of the bean.

Choose• which methods you want to use in your code and which event you want to handle.

Use• several beans of the same type with optimal code for each bean.

The concept of the peripheral allocation generally does not enable sharing of peripherals because it would make

the application design too complicated. The only way to share resources is through the beans and their methods

and events. For example, it is possible to use the RTIshared bean for sharing periodic interrupt from timers.

- 81 -

Processor Expert User's manual Application Design



Methods

Methods are interfacing bean functionality to user's code. All enabled methods are generated into appropriate

bean modules during code generation process. All Methods of each bean inserted into the project are visible as a

subtree of the beans in the Project panel.

You can use in your code all enabled methods. The easiest way to call any method from your code is to drag and

drop the method from project panel into the editor. The complexity and number of methods depend on the bean's

level of abstraction.

Events

Some beans allow handling the hardware or software events related to the bean. The user can specify the name

on function invoked in the case of event occurrence. They are usually invoked from the internal interrupt service

routines generated by Processor Expert. If the enabled event handling routine is not already present in the event

module then the header and implementation files are updated and an "empty" function (without any code) is

inserted. The user can write event handling code into this procedure and this code will not be changed during the

next code generation.

All Methods and Events of each bean inserted into the project are visible as a subtree of beans in the Project

panel.

Interrupt Subroutines

Some beans, especially the Low-level beans and Peripheral Initialization beans ( please see more details in

chapter 3.2.1  Bean Categories) allow to assign an interrupt service routine name to a specific interrupt vector

setup.

The name of the Interrupt service is generated directly to the interrupt vector table and the user has to do all

necessary control registers handling within his/her code. See chapter 3.5.1 Typical Usage of Peripheral

Initialization Beans for details.

ISRs items are listed in subtree of a bean in the Project panel.

Figure 3.1 - Example Of a Bean With Two ISRs

Highly Configurable and Extensible Library

Embedded Beans can be created and edited manually or with the help of Bean Wizard. CPU Beans are a special

category of beans.

More information about Embedded beans can be found in the Processor Expert:

Help | Processor Expert | Embedded Beans
Help | Processor Expert | Supported CPUs

- 82 -

Processor Expert User's manual Application Design



3.2.1. Bean Categories

Bean Selector Categories

Complete list of bean categories and corresponding beans can be found in the Bean Selector (main menu | View |

Bean Selector) at the page "Bean Categories".

The categories are related to the bean's functionality and allow to quickly find appropriate bean for a desired

function. There are the following four main categories containing many sub-categories.

CPU• - all available CPU beans. The CPU folder in Bean Selector contains subfolders for the CPU families.

CPU• External Devices - beans for devices externally controlled to the CPU. For example sensors,

memories, displays or EVM equipment.

CPU• Internal Peripherals - beans using any of on-chip peripherals offered by the CPU. The Bean Selector

folder with the same name contains sub-folders for the specific groups of functionality. (i.e. Converters,

Timers, PortIO etc.)

Note: It seems that beans (especially in this category) correspond to on-chip peripherals. Even this

declaration is close to the true, the main purpose of the bean is providing the same interface and

functionality for all supported CPU derivatives. This portability is the reason why the bean interface often

doesn't copy all features of the specific peripheral.

SW• - beans encapsulating a pure software algorithms or inheriting a hardware-dependent beans for accessing

peripherals. These beans (along with beans created by the user) can be found in a bean selector folder SW.

Specific functionality of the CPU derivative may be supported as a version-specific settings of the bean. For

more about this feature please refer to Version specific in the bean documentation or Beans Implementation help

chapter.

Levels of Abstraction

Processor Expert provides beans with a different level of abstraction and settings comfort.

High• Level Beans - The beans that are the basic set of beans designed carefully to provide functionality of

most microcontrollers on the market. An application built from these beans can be easily ported to another

microcontroller supported by the Processor Expert. This basic set contains beans for simple I/O operations

(BitIO, BitsIO, ByteIO, ...), timers (EventCounter, TimerInt, FreeCntr, TimerOut, PWM, PPG, Capture,

WatchDog,...), communication (AsynchroSerial, SynchroMaster, SynchroSlave, AsynchroMaster,

AsynchroSlave, IIC, ADC, internal memories, etc...).

This group of beans allows comfortable settings of a desired functionality such as time in ms or frequency in

Hz, the user doesn't have to know the details about hardware registers. CPU specific features are supported

only as CPU specific settings or methods and are not portable. See chapter 2.5.3.3 Version Specific Items for

details.

The beans inheriting or sharing a high level bean(s) to access hardware are also high level beans.

Low• Level Beans - The beans that are dependent on the peripheral structure to allow the user to benefit from

non-standard features of a peripheral. The level of portability is decreased due to a different bean interface

and the bean is usually implemented only for a CPU family offering the appropriate peripheral. However,

there is still implemented a comfortable settings of devices' features and effective set of methods and events.

Peripheral• Initialization Beans - These beans are on the lowest level of abstraction. An interface of such

beans is based on the set of peripheral control registers. These beans cover all features of the peripherals and

were designed for initialization of these peripherals. Usually contain only "Init" method, see 3.5.1  Typical

Usage of Peripheral Initialization Beans for further details). The rest of the function has to be implemented

- 83 -

Processor Expert User's manual Application Design



using a low level access to the peripheral. This kind of beans could be found in the " CPU Internal
Peripherals / Peripheral Initialization Beans" folder of the Bean selector and they are available only for

some CPU families. The interface of these beans might be different for a different CPU. The name of these

beans starts with the prefix 'Init_'.

Table of the features of the different levels beans

Feature High level Low level Peripheral Init

High level settings portable between

different CPU families

yes partially no

Portable method interface for all CPU

families

yes partially
(usually direct access to

control registers)

Init method

only

CPU specific peripheral features support partially mostly yes full

Low level peripheral initialization

settings

no partially yes

Speed mode independent timing yes mostly yes no

Events support yes yes no
(direct interrupt

handling)

3.3. CPU Beans

Processor Expert | Help | Supported CPUs, Compilers and Debuggers

A CPU bean is an Embedded Bean encapsulating one CPU type. As with all other beans, CPU Beans have

properties, methods and events. A Processor Expert project may contain several CPU beans. The project

generated for one CPU is called an Application. CPUs included in a project are displayed in the upper part of the

Project panel (depending on the Project panel settings); just one of them must be active (selected as the Target
CPU) before starting the code generation.

The Build options accessible in the Bean Inspector of the CPU bean allow to set properties of the Compiler
and Debugger (if it is supported).

In the CPU Bean Inspector (page Used ) it is also possible to select the peripherals which cannot be used by

Processor Expert. These peripherals will not be available for the beans in the project and may be freely used by

any external module.

- 84 -

Processor Expert User's manual Application Design



Portability

It• is possible to change the target CPU during the development of an application and even to switch between

multiple CPUs. This can be done simply by adding another CPU to the project and selecting it as the target

CPU.

To• connect the new CPU peripherals to the application beans correctly, it is possible to specify CPU on-chip

peripheral names (See chapter 3.3.3 Changing Names of Peripheral Devices for details.). This way the same

peripheral could be used on different CPU derivatives even if the original name is different.

Specific• application options for single targets are set in Project Options

Note: CPU peripherals names and Application Options are in the same popup menu as CPU inspector. See the

last part of this page to learn how to open it.

How to Add a CPU to the Project.

In• the Bean Selector window, select the CPU category and find the desired CPU bean.

Double-click• the desired CPU icon to add it into the project. When the CPU bean is added, it appears in the

upper part of the Project panel. If selected as the target CPU, the processor will be displayed in the Target

CPU window.

How to Select a CPU as the Target CPU.

The first CPU added to the project is automatically selected as the target CPU . It means that code will be

generated for this CPU. When there is more than one CPU in the project, the target CPU can be changed this

way:

Move• the mouse pointer to the CPU icon on the Project panel..

Click• with the right mouse button - a popup menu will appear.

Click• "Select CPU as target" - the CPU is selected as target.

This setting doesn't affect the setting of the target in the Targets tab in CodeWarrior's project panel. When the

user changes the target CPU in Processor Expert project panel and the CPU doesn't match with the current

CodeWarrior target settings the linker dialog is invoked during the code generation allowing the user to switch

the linker settings.

How to Change CPU Settings.

The only way to modify CPU settings (properties, methods, events, chip selects, timing, user-reserved

peripherals, also compiler and debugger settings, etc.) is to invoke the Bean Inspector for the selected CPU.

You can do that with the following steps (assuming that the CPU is included in the project):

Command• in CPU pop-up menu:

Movea. the mouse pointer to the CPU icon in the Project panel.

Clickb. with the right mouse button - a popup menu will appear

Clickc. CPU inspector - the CPU Bean Inspector will appear

Or• use double-click on the CPU icon in the Project panel.

Look at the given CPU help page to learn about what each feature and setting means.

- 85 -

Processor Expert User's manual Application Design



For a detailed description of the current CPU properties, methods and events, select Bean Inspector | Help |
Help on Bean in Bean Inspector.

3.3.1. CPU Properties Overview

CPU Properties can be set in CPU Bean Inspector. The complete list of CPU properties and its description is

available in the help page for the CPU (Bean Inspector | Help | Help on Bean).

Settings of these properties define the basic settings of the CPU:

CPU• type

external• Xtal frequency (and sub-clock xtal frequency)

PLL• settings

initialization• interrupt priority

external• bus and signals

speed• modes (See the following chapter Speed Modes).

and• all other functions which are not directly encapsulated by beans

3.3.2. Speed Modes Support

The CPU bean supports up to three different speed modes . The three speed modes are a Processor Expert

-specific concept which (among all the other PE features and concepts) ensures the portability of the PE projects

between different CPU models.

In fact, the 3 speed modes are a generalization of all the possible CPU clock speed modes used for power-saving

that can be found in most of modern microcontrollers. In the area of embedded systems, power saving and power

management functions are so important that we could not neglect the proper HW- independent software

implementation of these functions.

Therefore, for keeping the portability (HW independence) of PE projects, we recommend not to program the

CPU speed functions manually, but use these 3 CPU Bean speed modes instead:

High• speed mode - this mode is selected after reset and must be enabled in the project. This speed mode

must be the fastest mode of the main CPU clock.

Low• speed mode - this mode is usually used for another PLL or main prescaler settings of the main CPU

clock.

Slow• speed mode - this mode is usually used for the slowest possible mode of the main CPU clock.

The modes can be switched in the runtime by the following CPU Bean methods: (SetHighSpeed, SetLowSpeed

and SetSlowSpeed). If a speed mode is enabled in the CPU Bean properties, the corresponding method will be

enabled automatically.

For each bean in the project, whose function is dependent on the CPU timing:

Using• the bean property "CPU clock/speed selection", it is possible to define the speed modes that the bean

supports. If the CPU speed mode is changed to a mode which the bean does not support for some reason, the

bean will be disabled right after the CPU speed mode is changed. Otherwise the bean will be enabled.

During• the design, all the timing-related settings for such a bean are checked to be correct in all the speed

modes that the bean supports (is enabled in).

If• the speed mode is changed, the current settings for the bean will be conserved.

Before• or after the speed mode is changed, the following event functions are called: BeforeNewSpeed,

AfterNewSpeed.

- 86 -

Processor Expert User's manual Application Design



3.3.3. Changing Names of Peripheral Devices

The editor window lists all peripherals names . Initially, on-chip peripheral devices (pins, ports, timers,

converters, etc.) have default catalogue names. You may change these names using this editor.

How to Open the Editor.

In order to open the CPU Peripherals Names Editor, follow these steps:

Move• the mouse pointer to the selected CPU icon on the Project panel.

Press• the right mouse button - a popup menu will appear.

Click• on "CPU peripherals names".

Purpose of name changes.

Some beans are associated with on-chip The link between a bean and a peripheral is done by names (not by any

internal identification). Therefore, if you change the name of a peripheral to which a bean was linked, an error

will occur. The bean's link will no longer be valid.

Fortunately, when you change a peripheral's name, Processor Expert offers to update the name in all the project's

beans.

Advantages of the option to change names:

Peripheral• names may express the reality of the CPU environment, making the project more understandable.

When• working with several processors (having different peripheral names), one may assign a project-specific

name in order to facilitate the CPU changes in the project.

Example : Timer0 of CPU1 and TmrA of CPU2 have the same function in the project. They are both

associated with Bean1:TimerOut . Every time you change the Target CPU from CPU1 to CPU2 and vice

versa, you need to modify in the Bean Inspector the name of the peripheral linked to the TimerOut bean. To

avoid this, you can rename Timer0 and TmrA to one common name - MyTimer - and link the bean (Bean1)

to the MyTimer peripheral. Now, when CPU1 will be set active (selected as target CPU), Bean1 will be

linked to Timer0, and when CPU2 will be set active, Bean1 will be linked to TmrA.

How to Edit CPU Peripheral Names.

Follow these steps:

Select• a peripheral type in order to display all the CPU peripherals of this type.

In• the Name edit box, insert a new name for the selected CPU peripheral.

Note: If you want to get back the default catalogue name, press the left-arrow button.

Press• the OK button.

Answer• the confirmation request of the dialog box.

- 87 -

Processor Expert User's manual Application Design



Figure 3.2 - CPU Peripheral Names Editor

3.4. Predefined Types, Macros and Constants

Processor Expert generates definitions of all hardware register structures to the file IO_Map.h. The Processor

Expert type definitions are generated to the file PE_Types.h containing also definitions of macros used for a

peripheral register access. See chapter 3.19.2 Direct Access to Peripheral Registers for details.

Types

Type Description

int8_t 8-bit signed integer

int16_t 16-bit signed integer

int32_t 32-bit signed integer

int64_t 32-bit signed integer

uint8_t 8-bit unsigned integer

uint16_t 16-bit unsigned integer

uint32_t 32-bit unsigned integer

- 88 -

Processor Expert User's manual Application Design



uint64_t 64-bit unsigned integer

TPE_ErrCode Error code (uint8_t)

byte 8-bit unsigned integer (unsigned char)

bool Boolean value (unsigned char) (TRUE = any non-zero value / FALSE = 0)

word 16-bit unsigned integer (unsigned int)

dword 32-bit unsigned integer (unsigned long)

Structure for images

typedef struct {          /* Black&White Image  */

  word width;             /* Image width  */

  word height;            /* Image height */

  byte *pixmap;           /* Image pixel bitmap */

  word size;              /* Image size   */

  char *name;             /* Image name   */

} TIMAGE;

typedef TIMAGE* PIMAGE ;  /* Pointer to image */

Structure for 16-bit register:

/* 16-bit register (big endian format) */

typedef union {

   word w;

   struct {

     byte high,low;

   } b;

} TWREG;

Macros

__DI()             - Disable global interrupts

__EI()             - Enable global interrupts

SaveStatusReg()    - It saves CCR register and disable

                     global interrupts

RestoreStatusReg() - It restores CCR register saved

                     in SaveStatusReg()

See chapter 3.19.2   Direct Access to Peripheral Registers for the list of macros used for Peripheral registers

access.

Constants

Methods Error Codes

The error codes are defined in PE_Error module. Error code value is 8bit unsigned byte. Range 0 - 127 is

reserved for PE, 128 - 255 for user

- 89 -

Processor Expert User's manual Application Design



ERR_OK 0 OK

ERR_SPEED 1 This device does not work in the active speed mode

ERR_RANGE 2 Parameter out of range

ERR_VALUE 3 Parameter of incorrect value

ERR_OVERFLOW 4 Timer overflow

ERR_MATH 5 Overflow during evaluation

ERR_ENABLED 6 Device is enabled

ERR_DISABLED 7 Device is disabled

ERR_BUSY 8 Device is busy

ERR_NOTAVAIL 9 Requested value not available

ERR_RXEMPTY 10 No data in receiver

ERR_TXFULL 11 Transmitter is full

ERR_BUSOFF 12 Bus not available

ERR_OVERRUN 13 Overrun is present

ERR_FRAMING 14 Framing error is detected

ERR_PARITY 15 Parity error is detected

ERR_NOISE 16 Noise error is detected

ERR_IDLE 17 Idle error is detected

ERR_FAULT 18 Fault error is detected

ERR_BREAK 19 Break char is received during communication

ERR_CRC 20 CRC error is detected

ERR_ARBITR 21 A node loses arbitration. This error occurs if two nodes start

transmission at the same time

ERR_PROTECT 22 Protection error is detected.

ERR_UNDERFLOW 23 Underflow error is detected.

ERR_UNDERRUN 24 Underrun error is detected.

ERR_COMMON 25 General unspecified error of a device. The user can get a specific

error code using the method GetError.

- 90 -

Processor Expert User's manual Application Design



3.5. Typical Usage of the Bean in the User Code

This chapter describes usage of methods and events that are defined in most hardware beans. Usage of other

bean specific methods is described in the bean documentation, in the section "Typical Usage" (if supported).

In the following examples please assume a bean named "B1".

Peripheral Initialization Beans

Peripheral Initialization Beans are the beans of the lowest level of peripheral abstraction. These beans contain

only one method Init providing the initialization of the used peripheral. See chapter 3.5.1 Typical Usage of

Peripheral Initialization Beans for details.

Methods Enable, Disable

Most of the hardware beans support the methods Enable and Disable. These methods enable or disable

peripheral functionality, which causes disabling of functionality of the bean as well.

Hint: Disabling of the peripheral functionality may save CPU resources.

Overview of the method behavior according to the bean type:

Timer• beans: timer counter is stopped if it is not shared with another bean. If the timer is shared, the interrupt

may be disabled (if it is not also shared).

Communication• beans (like serial or CAN communication): peripheral is disabled.

Conversion• beans (A/D, D/A): converter is disabled. The conversion is restarted by Enable.

If the bean is disabled, some methods may not be used. Please refer to beans documentation for details.

MAIN.C

  void main(void)

  {

    ...

    B1_Enable();   /* enable the bean functionality */

                /* handle the bean data or settings */

    B1_Disable(); /* disable the bean functionality */

    ...

  }

  

Methods EnableEvent, DisableEvent

These methods enable or disable invocation of all bean events. These methods are usually supported only if the

bean services any interrupt vector.

The method DisableEvent may cause disabling of the interrupt, if it is not required by the bean functionality or

shared with another bean. The method usually does not disable either peripheral or the bean functionality.

MAIN.C

  void main(void)

  {

    ...

    B1_EnableEvent();  /* enable the bean events */

- 91 -

Processor Expert User's manual Application Design



                       /* bean events may be invoked */

    B1_DisableEvent(); /* disable the bean events */

                       /* bean events are disabled */

    ...

  }

  

Events BeforeNewSpeed, AfterNewSpeed

Timed beans which depends on the CPU clock (such as timer, communication and conversion beans), may

support speed modes defined in the CPU bean (in EXPERT view level). The event BeforeNewSpeed is invoked

before the speed mode change and AfterNewSpeed is invoked after the speed mode change. Speed mode may be

changed using CPU bean methods SetHigh, SetLow or SetSlow.

EVENT.C

  int changing_speed_mode = 0;

  void B1_BeforeNewSpeed(void)

  {

    ++changing_speed_mode;

  }

  void B1_AfterNewSpeed(void)

  {

    --changing_speed_mode;

  }

  

Note: If the speed mode is not supported by the bean, the bean functionality is disabled (as if the method Disable

is used). If the supported speed mode is selected again, the bean status is restored.

3.5.1. Typical Usage of Peripheral Initialization Beans

Init method

Init method that is defined in all Peripheral Initialization Beans. Init method contains a complete initialization of

the peripheral according to the bean's settings.

In the following examples, let's assume a bean named "Init1" has been added into the project.

The Init method of the Peripheral Initialization bean can be used in two ways.

The• Init method is called by Processor Expert

The• Init method is called by the user in his/her module

Automatic calling of Init

The user can let Processor Expert call the Init method automatically by selecting "yes" for the Call Init method
in the Initialization group of the Bean's properties.

When this option is set, Processor Expert places the call of the Init method into the PE_low_level_init function

of the CPU.c module.

Manual calling of Init

- 92 -

Processor Expert User's manual Application Design



Add the call of the Init method into the user's code (for example in main module).

Enter the following line into the main module file:

Init1_Init();

Put the Init method right below the PE_low_level_init call.

void main(void)

{

  /*** Processor Expert internal initialization. ***/

  PE_low_level_init();

  /*** End of Processor Expert internal initialization. ***/

   Init1_Init();

  for(;;) {}

}

Interrupt Handling

Some Peripheral Initialization beans allow the initialization of an interrupt service routine. Interrupt(s) can be

enabled in initialization code using appropriate properties that can be usually found within a group Interrupts.

After enabling, the specification of an Interrupt Service Routine (ISR) name using the ISR name property is

required. This name is generated to Interrupt Vector table during the code generation process. See chapter 3.7.1

Interrupt Vector Table for details.

Please notice that if the ISR name is filled it is generated into the Interrupt Vector Table even if the interrupt

property is disabled.

Figure 3.3 - Example Of The Interrupt Setup

Enabling/disabling peripheral interrupts during runtime has to be done by user's code (for example by utilizing

PESL or direct register access macros) because The Peripheral Initialization Beans do not offer any methods for

interrupt handling.

The ISR with the specified name has to be declared according to the compiler conventions and fully

implemented by the user. Declarations of the ISRs that already do not exist can be generated automatically by

PE during the code generation process into the Event module of the CPU bean (name of the CPU event module

could be changed in the Advanced view mode of the Bean Inspector) if the project option Project Options |
Generate ISR is enabled (this option is visible in the Advanced level of view).

Notice for 56800/E version users: ISRs generated by Processor Expert contain the fast interrupt handling

instructions if the interrupt priority is specified as fast interrupt.

- 93 -

Processor Expert User's manual Application Design



3.6. Reset Scenario With Processor Expert

Figure 3.4 - Reset sequence diagram

Figure 1 describes a typical initialization scenario with Processor Expert after the cpu reset.

_EntryPoint function

The _EntryPoint() function is called as the first function after the reset. This function is defined in the cpu

module, usually Cpu.c, and provides necessary system initialization like PLL, external bus, etc...

Sometimes it is necessary to do some special user initialization immediately after the cpu reset. Processor Expert

provides a possibility to insert user code into the _EntryPoint() function . There is a User Initialization

property in the build options tab of a CPU bean inspector defined for this purpose. See chapter 2.5.3 Bean

Inspector for details.

- 94 -

Processor Expert User's manual Application Design



C startup module

The C startup module is called at the end of the _EntryPoint() function. The C startup module provides

necessary initialization of the stack pointer, runtime libraries, etc... At the end of the C startup module the main()

function is called.

PE_low_level_init()

There is a second level of Processor Expert initialization PE_low_level_init() called at the beginning of the

main() function. PE_low_level_init() function provides initialization of all beans in project and it is necessary for

proper functionality of the Processor Expert project.

OnReset event

The user can write his/her own code that will be invoked from the PE_low_level_init() function after Processor

Expert internal initialization before the initialization of individual beans. Thus, the user should expect that

peripherals are not completely initialized yet. This event can be enabled/disabled in the CPU bean inspector's

events page.

3.7. Interrupts and Events

This chapter describes the details of interrupt and events processing in the code generated by Processor Expert.

An Interrupt is a signal that causes the CPU stop the execution of a code is suspended(the state of the CPU core

is saved on the stack) and Interrupt service routine is executed instead. After the execution is finished the

suspended program continues on the place where it was interrupted (the previous state of the CPU core is

restored from the stack). The signals causing interrupts can be a hardware events or software commands. For

more details please see an appropriate CPU manual.

Each interrupt can have assigned an Interrupt Service Routine (ISR) that is called when the interrupt occurs.

The table assigning the subroutines to interrupts is called Interrupt Vector Table and it is completely generated

by Processor Expert. See chapter 3.7.1 Interrupt Vector Table for details. Most of the interrupts have a

corresponding Processor Expert Events that allows to handle these interrupts.

Processor Expert Events are part of the Embedded bean interface and encapsulate the hardware or software

events within the system. Events are offered by the High and Low Level beans to help the user to service the

events without a knowledge of the platform specific code needed for such service.

Processor Expert Events can be enabled and disabled and have a user written program subroutines that are

invoked when the event occurs. Events often correspond to interrupts and are for that case invoked from the

generated ISR. Moreover, the event can also be a pure software event caused by a buffer overflow or improper

method parameter.

Enabling Event

Functionality of each event can be enabled or disabled. The user can easily enable the event and define its name

within the Bean Inspector of the appropriate bean. Another possibility is to double-click an event icon in the

bean's subtree or use a pop-up menu in the Project Panel window.

- 95 -

Processor Expert User's manual Application Design



Figure 3.5 - Event Example in the Bean Inspector Events Tab

Writing an Event Handler

Event handler is a subroutine that is assigned to a specific event. After the event is enabled Processor Expert

generates the empty function of the specified name to the Event module. See chapter 3.15 Code Generation for

details. The user can directly open the Event code (when it already exists) using a Bean pop-up menu |
View/Edit event module or a double-click on the event within a Project Panel. It is an ordinary function and the

user needs not to provide the interrupt handling specific code in his/her event code.

Interrupt Service Routines

When High or Low level beans are used, the interrupts functionality is covered by the events of the beans. The

interrupt subroutines calling the user's event handlers are generated to the bean modules and PE provides parts of

the background code necessary to correctly handle the interrupt requests.

The Peripheral Initialization beans can only provide the initialization of the interrupt and generate a record to

the Interrupt Vector Table. The user has to provide a full implementation of the interrupt subroutine. See chapter

3.5.1 Typical Usage of Peripheral Initialization Beans for details.

3.7.1. Interrupt Vector Table

An interrupt vector is a pointer to an interrupt handling subroutine.

An Interrupt Vector Table (IVT) is a table (list) which contains single interrupt vectors. Each interrupt

corresponds to one interrupt vector. IVT may be:

placed• in ROM - usually first-level IVTs: the jump to the right vector is done by hardware, no interrupt

vectors can be changed at runtime.

placed• in RAM - usually second-level IVTs: the jump to the right vector is done by software first-level

interrupt handling subroutine. This implementation can be slower due to this software redirection to users

routine.

The interrupt vectors placed in RAM and not allocated by any bean can be changed at runtime using CPU

bean methods (GetIntVect and SetIntVect).

Notice: Interrupt vectors in RAM are available only in the HC(S)08 and HC(S)12 versions.

The type of the IVT (ROM/RAM) can be setup using the option Application Options | Interrupt Vector Table
.

Each processor that can handle and process interrupts has a first-level IVT (in ROM). The second-level is used

only when it is necessary (i.e. IVT is placed in RAM).

Processor Expert generates content of the whole IVT into the file vectors.c. The content of the file depends on

the compiler syntax of the interrupt declarations.

- 96 -

Processor Expert User's manual Application Design



3.7.2. Processor Expert Priority System

Some CPUs support selectable interrupt priority. The user may select a priority for each interrupt vector. The

interrupt with a higher priority number can interrupt a service routine with the lower one.

Processor Expert supports the following settings in design-time: interrupt priority and priority of the event code.

Priority can be changed also in the user code. The user may use Cpu method to adjust the requested value.

Small microcontroller architectures support only a basic interrupt control: interrupts enabled or disabled .

Settings of the interrupt priority may be ignored for such microcontrollers. The only option is to enable interrupts

for the user event code.

Interrupt Priority

The user may select interrupt priority in the bean properties, just below the interrupt vector name. Processor

Expert offers the following values, which are supported for all microcontrollers:

minimum• priority

low• priority

medium• priority

high• priority

maximum• priority

The selected value is automatically mapped to the priority supported by the target microcontroller. It is indicated

in the third column of the Bean Inspector.

The user may select a target-specific value (such as priority 255), if portability of the application to another

architecture is not required.

Priority of the Event Code

The user can also select a priority for the processing of his/her event code. This priority may be different from

the interrupt priority. However, the meaning of the number is the same - the event may be interrupted only by the

interrupts with the higher priority number. Processor Expert offers the following architecture independent

values:

same• as interrupt - default value which means that the event priority is the same as the priority of interrupt

service routine.

minimum• priority

low• priority

medium• priority

high• priority

maximum• priority

interrupts• disabled - e.g. the highest priority supported by the microcontroller, which may be interrupted only

by non-maskable interrupts.

The selected value is automatically mapped to the priority supported by the target microcontroller and the

selected value is displayed in the third column of the Bean Inspector.

The user may also select a target-specific value, if portability of the application to another architecture is not

required.

Note: Some events do not support priorities, because their invocation is not caused by the interrupt processing.

- 97 -

Processor Expert User's manual Application Design



3.8. Implementation Details

This chapter contains implementation details for Embedded Beans and Processor Expert generated code. The

following subchapters concerns:

Version• Specific Information for 56800/E

Version• Specific Information for HC(S)08

Version• Specific Information for HCS12

Another implementation-specific information can be found on individual bean documentation pages.

3.8.1. Version Specific Information for 56800/E

Chaining of timer channels

The timer channels can be chained. Chaining of 16-bit counters it is supported by accommodating counts up to

64bits. The chained channels can be selected by a "Timer" property. For example, if 32-bit counts are required

for the FreeCntr bean, it is possible to set the "Timer" property of the bean by selecting the TMRA01_Compare

or TMRA01_Free values. These counters are not "standalone" 32- bit HW counters, but rather two chained

16-bit counters.

Notice: Only chaining of the channels 0-1,2-3 and 0-1-2-3 is available. Another possible chains can be created

with using Init_TMR beans.

Capture bean

Once the capture is triggered, the capture register cannot be overwritten until the 'Input edge' flag is enabled

again. This is provided different way depending on the Interrupt service settings and OnCapture Event usage.

The following cases can occur:

Interrupt• service is disabled. Once a capture event occurs, no further updating of the capture register will

occur until the method GetCaptureValue is used (the 'Input edge' flag is enabled in this method).

Interrupt• service is enabled and event OnCapture is disabled. The 'Input edge' flag is cleared immediately

after the interrupt occurs. Content of the capture register can be updated immediately with any input active

transition.

Interrupt• service is enabled and event OnCapture is enabled. It is recommended to use the method

GetCaptureValue within OnCapture event. Content of the capture register is protected against the change

until the end of OnCapture event only.

TimeDate bean

It is recommended to set a resolution to multiples of 10 ms (resolution of the time provided by the

GetTime/SetTime methods). It should be 10ms or more. Smaller values are unnecessarily overloading the

system.

PulseAccumulator bean

This bean is generally used to count pulses (events) generated on external inputs. Thus, the primary and

secondary input can only be a physical pins of the device. The primary input is required to be an internal clock,

the Init_TMR bean has to be used instead.

- 98 -

Processor Expert User's manual Application Design



WatchDog bean

The interrupt service routine for the vector INT_COPReset is generated only if the OnWatchDog event is used.

Otherwise the INT_COPreset entry in the interrupt vector table contains only the call of the _EntryPoint, which

is the same as the INT_Reset service routine. The user can find out the cause of the reset by using a CPU bean

method GetResetSource.

FreescaleCAN bean

This bean can encapsulate FlexCAN device or MSCAN12 device.

FlexCAN• device
The FlexCAN device receives self-transmitted frames if there exist a matching receive MB. FlexCAN

module is implemented on 56F83xx derivatives. Message buffers should be configured as receive or transmit

using the FreescaleCAN bean's settings.

MSCAN12• device
When interrupt mode is enabled, received frames should be read in the OnFullRxBuffer event to avoid

message buffer lock/unlock problems.

AsynchroSerial, SynchroMaster, SynchroSlave, FreescaleSSI beans

When the bean is configured in DMA mode then Send/Receive routines use a user buffer that is passed as a

parameter to these methods. User should avoid changing a buffer content during receive/transmit process.

IntFlash beans

If the Save write method is used (property Write method), the Save buffer (buffer for saving data from the sector

which has to be erased) is implemented by bean in data RAM.

If the Virtual page feature is used (property Virtual page), the page buffer is implemented by bean in data RAM.

The basic addressing mode of IntFLASH bean methods is a 16-bit word. It is used by most of the memory access

methods. Only SetByteFlash, GetByteFlash, SetBytePage, GetBytePage and SetBlockFlash, GetBlockFlash

methods use a byte addressing mode. An address of the byte location is an address according to a 16-bit word

location multiplied by 2 and then the even/odd bytes are discriminated by LSB: 0 for even byte, 1 for odd byte.

PE does not check if the memory mode selected in the CPU bean corresponds to the current CodeWarrior target.

Thus it is needed to take care to the memory mode selection especially if the program and boot flash memory is

served by the IntFLASH bean (if the program and boot flash memory has to be served by the bean, then one of

the internal memory targets has to be selected).

56F83xx,• 56F81xx, 56F80xx derivatives:

If the project contain both IntFLASH beans (one for each memory space), then none of the beans could be

disabled in High speed mode.

If a programming/erasing operation is started by bean and it is configured not to wait until the end of the

operation (property Wait enabled in init., method SetWait), then calling of a programming/erasing method of

the other bean is not allowed before the end of the programming/erasing operation of the first bean

(ERR_BUSY is returned).

56F80x,• 56F82x derivatives:

Internal flash has not protection feature, so the SetProtection and SetGlobalProtection methods are not

implemented.

If the bean is configured not to wait until the end of the programming/erasing operation (property Wait

- 99 -

Processor Expert User's manual Application Design



enabled in init., method SetWait), the FinishProcess method has to be called after the end of the operation.

Since the flash device does not support erase verification feature, the EraseVerify method is implemented by

software routine. Thus it gets more time to verify the flash memory than this method is implemented by

hardware module (all parts of the flash memory have to be read).

3.8.2. Version Specific Information for HC(S)08

The ROM, Z_RAM and RAM ranges depend on the target CPU. It is recommended to increase the stack size if

some standard libraries are used.

For the detailed information on debugging HC08 application using MON8 interface please follow to the chapter

3.8.2.2  Debugging on HC08 Using MON8.

Beans' implementation details:

All• the beans:

Interrupt- priority - the value of this property is ignored, since the HC08 has no HW support for setting

interrupt priorities.

Event- priority - the value of this property can be only "0" (interrupts disabled) or "1" (interrupts enabled),

since the HC08 has no HW support for setting interrupt priorities.

CPU• :

Speed- Mode selection (CPU methods SetHighSpeed, SetLowSpeed, SetSlowSpeed ): if CPU

clock-dependent beans are used then signals generated from such internal peripherals may be corrupted at

the moment of the speed mode selection (if function of clocked devices is enabled). Handling of such a

situation may be done via events BeforeNewSpeed and AfterNewSpeed.

Interrupt- vector table in ROM is placed at the default address in the ROM or in the Flash.

If the interrupt vector table in RAM is selected then it is generated the table in RAM and special

redirection code to ROM. This code transfers program control to the selected address according the table

in RAM. You can use CPU methods SetIntVect to set the address of interrupt service routine.

Note: you cannot change the interrupt vector that is allocated by any bean in your project. It is

recommended to select the event OnSWI together with this option to minimize size of generated code.

PPG• : The PPG beans always allocates the whole timer. Although it would be possible to share the selected

timer between 2 PPG beans, it would be impossible to set the PPG period for these two beans separately. (

More information about this bean can be found in chapter Timers)

PWM• : In contrast to the PPG beans, it is possible for PWM beans to share the selected timer, since they do

not have the SetPeriod method. (More information about this bean can be found in chapter Timers)

EventCntr16• : Since the timer overflow flag is set when the timer reaches a value of 65535, the maximum

number of events that can be counted by this bean is limited to 65534 (value of 65535 is marked as invalid as

the method GetNumEvents returns the ERR_OVERFLOW value as its result.) (More information about this

bean can be found in chapter Timers)

TimeDate• : It is recommended to make a setting close to 10 ms (resolution provided by GetTime/SetTime

methods). Smaller values unnecessarily overload the system.

WatchDog• : When the Watchdog bean is added to the project, it is automatically enabled. The enabling code

is placed in the CPU initialization code.

Note: Watchdog is enabled by a write to the configuration register. This register can be written only once

after CPU reset. Since the register also contains other bits, that are written during the CPU initialization,

the watchdog must be enabled when CPU is initialized. The property "CPU clock/speed selection" has no

- 100 -

Processor Expert User's manual Application Design



effect because the COP timer clock source is CGMXCLK.

AsynchroSerial• :

Timing- setting 'values from list' enables to select various values denoted by changes of the prescaler most

tightly coupled with the UART.

If- a software handshake is used for extremely high baud-rates it may happen that no overruns appear and

transmitted characters get lost

AsynchroMaster• : the same as AsynchroSerial

AsynchroSlave• : the same as AsynchroMaster.

SynchroMaster• : Because of the disability of an SPI device (configured as Master) caused by a mode fault,

the mode fault automatically disables the bean (inside interrupt service) if interrupt service is enabled. If the

interrupt service disabled and a mode fault occurs, the bean will be disabled at the beginning of RecvChar

method.

SynchroSlave• : A mode fault doesn't disable an SPI device (configured as Slave), therefore it doesn't disable

the bean.

If a mode fault error occurs, software can abort the SPI transmission by disabling and enabling of the device

('Enable' and 'Disable' methods). When Clock edge property = "falling edge", Shift clock idle polarity

property = "Low" or Clock edge property = "rising edge", Shift clock idle polarity property = "High" the SS

pin of the slave SPI module must be set to logic 1 between bytes. The falling edge of SS indicates the

beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with

the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the data

register. Therefore, the slave data register must be loaded with the desired transmit data before the falling

edge of SS.

BitIO,• BitsIO, ByteIO, Byte2IO, Byte3IO, Byte4IO:

The GetVal and GetDir methods are always implemented as macros. Optimization for property (BitIO,

BitsIO) doesn't influence the generated code.

WordIO,• LongIO:

These beans could not be implemented on Freescale HC08 - this CPU has no instructions for 16-bit and

32-bit access into the I/O space.

ADC,• ADconverter:

There are the following restrictions in Processor Expert:

Clock- input of A/D clock generator cannot be changed in runtime.

The- voltage levels supplied from internal reference node cannot be measured.

A conversion time in the 'Conversion time' dialog is calculated for the worse case, that is 17 cycles per one

conversion.

ADfast• :

There are the following restrictions in Processor Expert:

Clock- input of A/D clock generator cannot be changed in runtime.

The- voltage levels supplied from internal reference node cannot be measured.

ADC- device doesn't support continuous mode through adjoining channels. Therefore the bean does

measurement in single mode.

A conversion time in the 'Conversion time' dialog is calculated for the worse case, that is 17 cycles per one

conversion.

ExtInt• :

If a pin other than IRQ (IRQ1) is set in this bean, setting of the 'Pull resistor' property affects only disable

state of the device (bean). If the device (bean) is enabled, the pull-up resistor is always connected to the pin.

- 101 -

Processor Expert User's manual Application Design



KBI• :

Setting- of the 'Pull resistor' property affects only the disabled state of the device (bean). If device (bean)

is enabled, the pull-up resistors are always connected to the used pins.

Only- one bean can be used in PE project.

IntEEPROM• :

A bean expects that all security options of EEPROM are disabled. If some security option is enabled methods

performing write operation (such as SetByte) can return an error.

3.8.2.1. HC08 Timer Beans Implementation Details

The peripheral names and numbers used within this chapter are related to MC68HC908AZ60 CPU. Other

derivatives of HC08 family contain analogous timers (with different name or structure). The 68HC908AZ60

contains two timer modules TIMA and TIMB. Each one of these modules is based on a 16-bit counter that can

operate as a free-running counter or a modulo up-counter. TIMA module has six channels and TIMB has two

channels that can be programmed independently as input capture or output capture channels. Please see more

details on timer modules in the CPU manual. For details on another HC08/HCS08 family members please use

CPU Parameters Overview window or see a documentation of the appropriate CPU.

- 102 -

Processor Expert User's manual Application Design



Figure 3.6 - Timer A block diagram based on manufacturer documentation

Timer peripheral selection, allocation and timing settings are available in the Bean Inspector of the selected bean

and overview of peripheral allocation is also available in Target CPU or Peripheral Usage windows. Please see

chapters 2.5.3  Bean Inspector, 2.7  Target CPU Window and 2.15  Peripherals Usage for details.

PWM

The PWM bean requires counter register, modulo register and one or two compare registers according to the

selected mode. It is possible to use TIMA and TIMB devices. For the TIMA device up to 3 beans can use the

device in buffered mode, up to 6 beans can use it in unbuffered mode and for the TIMB 1 bean can use the

device in buffered mode and up to 2 in unbuffered mode.

Example 1: Allocation of two PWM beans on the timer TIMA.

PWM#1 uses channel 2 and PWM#2 uses channels 4 and 5 in buffered mode. The registers counter and modulo

are shared by both beans (in this case the same period of the generated signal is used for both the counters).

- 103 -

Processor Expert User's manual Application Design



  bean PWM #1 in

unbuffered mode

bean PWM #2 in

buffered mode

counter register shared shared

modulo register shared shared

compare register ch0    

compare register ch1    

compare register ch2 allocated  

compare register ch3    

compare register ch4   allocated

compare register ch5   allocated

Sharing peripheral with other beans

PWM bean can also share a timer peripheral with another timer beans: TimerInt, RTIshared, TimeDate,

FreeCntr8, FreeCntr16, FreeCntr32. The limitation of the PWM when sharing the timer device with these beans

is that the period of the PWM must be equal to the full range of the counter (The timing dialog for 'Period'

property offers only values corresponding to this condition). Shared beans cannot use the same channels of a

timer.

PPG

The PPG bean requires counter register, modulo register and one or two compare registers according the selected

mode. There it is possible to use TIMA and TIMB devices. It is not possible to share the un-allocated channels

with other beans which means that the PPG bean allocated the whole peripheral.

Example: Allocation of registers of the PPG bean in buffered mode on the timer TIMA.

Channels: 0,1,2 and 3 are free.

  bean PPG in buffered mode

counter register allocated

modulo register allocated

compare register ch0  

compare register ch1  

compare register ch2  

compare register ch3  

compare register ch4 allocated

compare register ch5 allocated

- 104 -

Processor Expert User's manual Application Design



TimerOut

The TimerOut bean requires counter register, modulo register and one or two compare registers according the

selected mode. It is possible to use TIMA and TIMB devices. For the TIMA device 3-6 TimerOut beans can be

used and for the TIMB device 1-2 TimerOut beans can be used.

Example:Allocation of registers with one TimerOut bean in buffered mode on the timer TIMA.

Channels free: 1,2,3,4 and 5 are free. It is possible to allocate the remaining registers. For example with the

TimerOut, TimerInt , FreeCntr etc. If more than one bean is used, the other ones work in shared mode. The

beans use common counters and modulo registers, and they have a generated signal of the same period.

  bean TimerOut in unbuffered mode

counter register Allocated (can be shared)

modulo register Allocated (can be shared)

compare register ch0 Allocated

compare register ch1  

compare register ch2  

compare register ch3  

compare register ch4  

compare register ch5  

TimerInt, RTIshared, TimeDate, FreeCntr8, FreeCntr16, FreeCntr32

These beans require counter register, modulo register and eventually compare register according the selected

mode. There it is possible to use TIMmod (PITmod), TIMA, TIMB and RTI devices. The TIMA device can use

3-6 TimerOut beans and the TIMB device can use 1-2 TimerOut beans.

Example:Allocation of registers with one Timer Int bean on the timer TIMA.

Channels free: 1,2,3,4 and 5 are free. It is possible to allocate the remaining registers, for example, with the

beans of same type and also with TimerOut beans. If more than one bean is used, the other ones work in shared

mode. The beans use a common counter and modulo register and a have generated signal of the same period.

- 105 -

Processor Expert User's manual Application Design



  TimerInt

counter register allocated (can be

shared)

moduloregister allocated (can be

shared)

compare register ch0 Allocated

compare register ch1  

compare register ch2  

compare register ch3  

compare register ch4  

compare register ch5  

Sharing the timer device

Multiple TimerInt, RTIshared, TimeDate, FreeCntr8, FreeCntr16 and FreeCntr32 beans can share the selected

timer device. The limitation is that the prescaler value needed to achieve a desired timing must be equal for

individual beans.

Example:Allocation of registers with more beans on the timer TIMA.

  RTIshared TimerInt TimerInt TimerOut

counter register shared shared shared shared

modulo register shared shared shared shared

compare register ch0   allocated    

compare register ch1        

compare register ch2      allocated  

compare register ch3        

compare register ch4       allocated

compare register ch5        

- 106 -

Processor Expert User's manual Application Design



EventCntr8, EventCntr16, EventCntr32

These beans require counter register and modulo register. It is possible to use the beans for TIMA and TIMB

devices. These beans allocate whole peripheral, it is not possible to share unallocated channels with other beans.

Example:Allocation of registers with EventCntr16 bean on the timer TIMA.

  EventCntrl16

counter register allocated

modulo register allocated

compare register ch0  

compare register ch1  

compare register ch2  

compare register ch3  

compare register ch4  

compare register ch5  

Capture

These beans require counter register, modulo register and compare register as input capture latch. It is possible to

use the beans for TIMA and TIMB devices.

Example:Allocation of registers with Capture bean on the timer TIMA.

Channels: 0,2,3,4 and 5 are free.

  Capture

counter register allocated (can be shared)

modulo register allocated (can be shared)

compare register ch0  

compare register ch1  allocated

compare register ch2  

compare register ch3  

compare register ch4  

compare register ch5  

- 107 -

Processor Expert User's manual Application Design



3.8.2.2. Debugging on HC08 Using MON8

Every member of the HC08 microcontroller family is equipped with a basic support for in-system programming

and debugging (MON8, for details see datasheet of a HC08 processor). The microcontroller can work in two

modes - normal mode and monitor mode.

In the monitor mode the microcontroller can accept couple of commands over the single wire interface. The

commands allow to read/write the memory and run a code. In combination with Break module a simple

debugging system can be built (e.g. ICS boards, P&E Multilink or various custom designs).

There are few issues that results from the characteristics of the the MON8 system:

To• achieve a standard communication speed (19200, 9600, 4800 bauds) a specific oscillator frequency must

be used (usually 9.83 or 4.915MHz). Suitable source of processor clock is usually part of the debugging

system. The user must set the same clock frequency in the CPU bean of his project to ensure that the timing

of components will be correct. Care must be taken when using PLL and SpeedModes. Change of the

operating frequency of the target processor can result in lost of communication with the target system.

Some• processor models allows to by-pass internal divider-by-2, which effectively doubles the bus clock of

the processor. The bypass is selected by logic state of selected input pin (e.g. PTC3) during processor reset.

The user must set appropriate property in the CPU bean to reflect actual state of the pin.

One• I/O pin (e.g. PTA0) is used for communication with the host computer, therefore it can't be used as a

general I/O pin.

In• some configuration of the debugging system the IRQ pin can be also used to control the target board,

therefore it can't be used in user application.

Capturing unused interrupts

The debugging system based on MON8 allows only one breakpoint placed in the flash memory. However,

executing an SWI instruction while running is functionally equivalent to hitting a breakpoint, except that

execution stops at the instruction following the SWI. The user can use this feature to actively capture unused

interrupts. There are two options of capturing such interrupts :

If• the property named 'Unhandled interrupts ' located in Build Options tab is set to Own handler for every,

there is an interrupt routine generated for each unhandled interrupt generated into CPU.c module. The SWI

instruction can be placed in the generated routine of the interrupt that need to be caught.

The• user can also use the InterruptVector bean. In the properties of the bean select which interrupt will be

monitored and set the name of the ISR function - e.g. Trap. One function can be used to capture more

interrupts if property Allow duplicate ISR names is set to yes. The Trap function will contain only the SWI

instruction:

__interrupt void Trap(void)

  {

    asm(SWI);

  }

- 108 -

Processor Expert User's manual Application Design



3.8.3. Version Specific Information for HCS12

All beans were tested with the CodeWarrior with the following compiler settings:

Other• parameters = -Onf

The ROM, ZPAGE and RAM ranges depend on the target CPU. It is recommended to increase the stack size if

some standard libraries are used.

Beans' implementation details :

All• the beans:

Interrupt- priority - the value of this property is ignored, since the HCS12 has no hardware support for

setting interrupt priorities.

Event- priority - the value of this property can be only "0" (interrupts disabled) or "1" (interrupts enabled),

since the HCS12 has no HW support for setting interrupt priorities.

CPU• :

Speed- Mode selection (CPU methods SetHighSpeed, SetLowSpeed, SetSlowSpeed ): if CPU

clock-dependent beans are used then signals generated from such an internal peripheral may be corrupted

at the moment of the speed mode selection (if function of clocked devices is enabled). Handling of such a

situation may be done via events BeforeNewSpeed and AfterNewSpeed.

Interrupt- vector table in ROM is placed at the default address in the ROM or in the Flash.

If the interrupt vector table in RAM is selected then it generates the table in RAM and special redirection

code to ROM. This code transfers program control to the selected address according the table in RAM.

You can use CPU methods SetIntVect to set the address of interrupt service routine.

Note: you cannot change interrupt vector that is allocated by any bean in your project. It is recommended to

select the event OnSWI together with this option to minimize the size of generated code.

PPG• : HW doesn't support an interrupt. Aligned Center Mode Counter counts from 0 up to the value period

register and then back down to 0. If the align mode is switched to Center align mode then real lengths of

Period and Starting pulse width signals will be twice as much as is being displayed in the Bean Inspector.

Note: See the Internal peripheral property group of the CPU bean for special settings.

PWM• : HW doesn't support an interrupt. Aligned Center mode Counter counts from 0 up to the value period

register and then back down to 0. If align mode is switched to Center align mode then the real lengths of

Period and Starting pulse width signals will be twice as much as is being displayed in the Bean Inspector.

Note: See the Internal peripheral property group of the CPU bean for special settings.

EventCntr8/16/32• : Functionality of this bean is a subset of the pulse accumulator. For work with hold

registers, gated time mode use the PulseAccumulator bean instead of the EventCounter bean.

PulseAccumulator• :

Method- Latch
This method causes capture of the counter in the hold registers of all capture and pulse accumulator

beans in PE project because this method is invoked for all ECT modules.

Note: See Internal peripheral property group of the CPU bean for special settings.

Capture• :

Method- Reset -If the counter can't be reset (is not allowed by HW or the counter is shared by more

beans) this method stores the current value of the counter into a variable instead of a reset.

Method- GetValue -If the counter can't be reset (is not allowed by HW or the counter is shared by more

- 109 -

Processor Expert User's manual Application Design



beans) this method doesn't return the value of register directly, but returns the value as a difference

between the register value and the previously stored register value. This causes values that are

proportional to time elapsed from the last invocation of the method Reset.

Method- Latch -This method causes capture of the counter in the hold registers of all capture and pulse

accumulator beans in PE project because this method is invoked for all ECT modules.

Method- GetHoldValue -This method transfers the contents of the associated pulse accumulator to its

hold register.

Note: See the Internal peripheral property group of the CPU bean for special settings.

BitIO,• BitsIO, ByteIO, Byte2IO, Byte3IO, Byte4IO:

The GetVal and GetDir methods are always implemented as macros.

LongIO:• 
This bean could not be implemented on Freescale HCS12 - this CPU has no instructions for 32-bit access

into the I/O space.

IntEEPROM:• 
The EEPROM array is organized as rows of word (2 bytes), the EEPROM block's erase sector size is 2 rows

(2 words). Therefore it is preferable to use word aligned data for writing - methods SetWord and SetLong -

with word aligned address or to use virtual page - property 'Page'. The size has to be a multiple of 4 bytes.

SynchroMaster:• 
The mode fault causes disability of the bean (and SPI device) automatically (inside interrupt service) if

interrupt service is enabled. If the interrupt service isdisabled and a mode fault occurs, the bean will be

disabled at the beginning of RecvChar method.

IntFlash:• 
The Virtual page - Allocated by the user feature and corresponding methods and events are not implemented.

ExtInt:• 
If XIRQ is selected, the method 'Disable' can't be generated, because it isn't supported by hardware. For pins

of H, J, and P ports it is not possible to switch pull resistor (pull up/pull down) and sensitive edge (rising

edge/falling edge) arbitrarily. Because of hardware limitations, pull down with falling edge and pull up with

rising edge settings aren't allowed.

3.9. Configurations

The user can have several configurations of the project in one project file. The configuration system is very

simple. Every configuration keeps the enable/disable state of all beans in the project (it does NOT keep bean

settings!). If you enable/disable a bean in the project, the bean state is updated in the currently selected

configuration. If you create a new configuration the current project state is memorized.

Configurations of the current project are listed in the Project Panel configurations folder. They can be managed

using a pop-up menu of the specific configuration or the whole Configurations folder.

The symbol for conditional compilation is defined if it is supported by selected language/compiler. The symbol

PEcfg_[ConfigurationName] is defined in the CPU interface.

The user can switch using this symbol between variants of code according to the active configuration (see

example in this chapter).

Configuration also stores which CPU is selected as the target CPU.

If the name of the configuration matches the name of one of the CodeWarrior's targets, this target is
automatically selected as an active target when the user runs code generation.

- 110 -

Processor Expert User's manual Application Design



Note: It is possible to have two beans with the same name in Project. Each of the beans could be enabled in

different configuration. This way the user can have different setup of a bean (a bean with the same name) in

multiple configurations.

Example

Let's have a configuration named 'Testing case'. We would like to use a bean and part of our code using the bean

only in the 'Testing case' configuration. We make the Testing case configuration active. After the successful code

generation the CPU.H file contains the following definition:

/* Active configuration define symbol */

#define PEcfg_Testingcase 1

We will surround the part of the code used only in this configuration the following way:

...

#ifdef PEcfg_TestingCase

   Bean_MethodCall(...);

#endif

...

3.10. Design Time Checking: Consequences and Benefits

During the design time, Processor Expert performs instant checking of the project. As a result of this

checking, error messages may appear in the Error Window or directly in the third column of the Bean Inspector

(on the faulty items line). Sometimes, it may happen that only one small change in the project causes several

(general) error messages. The most common reasons for this behavior are stated below.

On-Chip Peripherals

Some beans use on-chip peripherals. In the Bean Inspector you can choose from all possible peripherals that can

be used for implementation of the function of the current bean. Processor Expert provides checking for required

peripheral features such as word width and stop bit for serial channel, pull resistor for I/O pin and others.

Processor Expert also protects against the use of one peripheral in two beans. If the peripheral is allocated for

one bean then the settings of this peripheral cannot be changed by any other bean. The state of an allocated
peripheral should never be changed directly in the user code. (Using special registers, I/O ports etc.) We
recommend to always use methods generated by Processor Expert. If the functionality of generated methods

is not sufficient for your application, you can use PESL (Processor Expert System Library). See chapter 3.19

Low-level Access to Peripherals for details.

Note that if a peripheral is allocated to any bean, all its parts are reserved. For example if you use the 8-bit I/O

port, all the I/O pins of the port are allocated and it is not possible to use them in other beans.

In some timer beans you can choose if you want to use only a part of the timer (compare register) or an entire

timer. If you select the entire timer, the driver can be optimized to best work with the timer: it can, for example,

invoke reset of the timer whenever is it needed by the bean function.

- 111 -

Processor Expert User's manual Application Design



Interrupt Priority

If the target CPU shares interrupt priority between several interrupt vectors or shares interrupt vectors, Processor

Expert provides checking of interrupt priority settings. If you would like to have more detailed information about

Interrupt Priority see the Priorities page.

Memory

Processor Expert always checks the usage of internal and external memories accessible via CPU address and

data bus. Position and size of internal memory is defined by the CPU type and can be configured in the CPU

Properties (if supported). External memories must be defined in CPU Properties.

Any bean can allocate a specified type of memory. See bean descriptions for detailed information about

requirements for types of memory. Processor Expert provides checking of memory and protects you from

making a poor choice. (For example: if a bean requires external Flash, it is not possible to enter an address in

internal RAM).

The bits can also allocate memory. Therefore you can be sure that only one bean uses an allocated bit of a

register in external address space.

Timing

The settings of all timed devices are checked. If no error is detected, it means that you can work with the given

settings without a problem in run-time. Generated drivers are provided in such a way that they cannot influence

each other - this means that, even if several beans share one physical device, changes in the bean settings using

the values given (and checked) by Processor Expert are possible in run-time without affecting any other bean.

Dealing with errors:

One• bean reports an error in the Project panel

Take a look at the bean inspector dedicated to the bean. Highlighted (red) values report an error (move a

mouse pointer on to the message to get more information).

Several• beans report an error in the Project panel

Only- one bean is incorrectly set

If you cannot directly detect the faulty bean, just go through all the beans reporting an error. If a

message 'Timing setting failed because of another bean' is reported then this bean seems to be OK, but,

due to hardware dependency, it is temporarily blocked by the faulty bean. If another message is reported

(for instance: 'Timing settings failed in X speed mode - ...') read the message carefully. It describes the

error.

More- than one bean is incorrectly set

If all the beans report the error message 'Timing settings failed in X speed mode', then it means that these

beans are mutually dependent on the hardware level and their settings do not tally. Usually, you will see

a message saying 'ERROR: The following devices mutually block their timing settings: list_of_beans' in

the Error window. You may be helped in your error diagnosis by looking at the hardware dependencies

with the Target CPU Timing Model . A typical example of hardware dependencies is timers sharing a

single prescaler.

If not all the beans report such a message, then several beans are incorrectly set and you should read the

messages carefully to detect the faulty beans.

- 112 -

Processor Expert User's manual Application Design



3.11. Creating User Bean Templates

If you frequently use a bean with the same specific settings , you may save the bean with its settings as a

template. This template is displayed in the Bean selector under given name, behaves as a normal bean and

could be added to any project. The template has the same properties as the original bean. The values of the

properties are preset in the template and could be marked as read only.

In this section, we will show how to create a bean template and save it.

How to Create and Save Templates.

Click the right mouse button on the selected bean icon on the Project panel in order to display the Bean pop-up

menu.

Figure 3.7 - Bean Pop-up Menu

Select the Save bean settings as template item to open the Bean Template dialog window which allows to

create and save the template.

- 113 -

Processor Expert User's manual Application Design



Figure 3.8 - Bean Template Dialog

Dialog window has the following parts:

Bean• template name: Name of the new template

Icon• Icon representing the template. Click the icon to select a different icon.

Template• author: Your name, name of the firm etc...

Customize• settings... Button invokes the Template Editor which allows to change the settings of the bean.

These settings will be saved as a template. (See the following section 'Customizing Bean Template Settings'

for details).

Short• template description: Type a short description.

User• gets on of the messages: "Setting of the bean template is not dependent on the target CPU." or

"Warning: Setting of the bean template is dependent on the target CPU". The second one means that the

template will be shown in bean selector only for the current target CPU.

Associated• peripheral / Mode - This setting is present only if it is meaningful. If the user chooses a

peripheral, the template will be shown in OnChipPeripheral mode only for this peripheral.

Existing• templates Shows list of the existing templates for the bean. Clicking on the item in the list will load

the templates settings into the input fields.

After clicking the OK button, the bean template is saved and automatically added to the Beans Selector tree.

Customizing Bean Template Settings

If you click Customize settings... button in the Bean Template dialog the Template Editor dialog window is

shown and you can make the following changes into the template:

set• default values of properties,

set• default values of methods or events (whether it has be generated or not generated),

rename• methods (by double clicking on method name),

set• feature of properties, methods or events as Read Only (the user cannot edit the default values for

- 114 -

Processor Expert User's manual Application Design



properties or change features like whether to generate or not to generate methods or events) or Changeable

(user can edit default values of properties or change features generate/not generate of methods or events) by

double clicking in the first column in Bean Inspector. The icon shows the status:

- - feature is ReadOnly.

- - feature is Changeable.

set• level of visibility of properties, methods or events by repeatedly double clicking in last column in Bean

Inspector. When you use the template you may change the level of visibility in the View menu in the Bean

Inspector (See chapter 2.5.3 Bean Inspector for details.).

Possible values:

Type:- BASIC - property/method/event will always be visible.

Type:- ADVANCED - property/method/event will be visible if it is selected in Advanced view.

Type:- EXPERT - property/method/event will be visible if it is selected in Expert view.

Type:- @ HIDDEN @ - property/method/event will never be visible.

Figure 3.9 - Template Editor Window

Finally, click the icon on the bean inspector's toolbar to accept the changes.

To discard the changes and return without changing a template settings close the window or click the icon.

- 115 -

Processor Expert User's manual Application Design



3.12. Signal Names

The main purpose of signals is to allow the user to name the pins used by beans with names corresponding to his

application. A signal name can be assigned to an allocated pin in the bean properties (available in ADVANCED

view mode).

Processor Expert automatically generates a document {projectname}_SIGNALS.txt or

{projectname}_SIGNALS.doc containing a list of relationship between defined signals and corresponding pins

and vice versa. There is an additional signal direction information added next to each signal name and pin

number information next to each pin name. This document can be found in the Documentation folder of the

Project Panel.

Sample of generated signals documentation:

=================================================================

 SIGNAL LIST

-----------------------------------------------------------------

SIGNAL-NAME [DIR]        => PIN-NAME [PIN-NUMBER]

-----------------------------------------------------------------

LED1 [Output]            => GPIOA8_A0 [138]

LED2 [Output]            => GPIOA9_A1 [10]

Sensor [Input]           => GPIOC5_TA1_PHASEB0 [140]

TestPin [I/O]            => GPIOE0_TxD0 [4]

Timer [Output]           => GPIOC4_TA0_PHASEA0 [139]

=================================================================

=================================================================

 PIN LIST

-----------------------------------------------------------------

PIN-NAME [PIN-NUM]       => SIGNAL-NAME [DIRECTION]

-----------------------------------------------------------------

GPIOA8_A0 [138]          => LED1 [Output]

GPIOA9_A1 [10]           => LED2 [Output]

GPIOC4_TA0_PHASEA0 [139] => Timer [Output]

GPIOC5_TA1_PHASEB0 [140] => Sensor [Input]

GPIOE0_TxD0 [4]          => TestPin [I/O]

=================================================================

- 116 -

Processor Expert User's manual Application Design



3.13. Bean Inheritance and Bean Sharing

Basic Terms

Ancestor• is a bean that is inherited (used) by another bean.

Descendant• is a new bean that inherits (uses) another bean(s).

Shared• Ancestor is a bean that can be used and shared by multiple beans.

Inheritance

Inheritance means that an ancestor bean is used only by the descendant bean. Inheritance is supported in order to

allow beans to access peripherals by hardware-independent interface of the ancestor beans.

For example, a bean that emulates a simple I2C transmitter may inherit two BitIO beans for generation of an

output signal.

On several complex beans (for example some MPC Pripheral Init beans) inheritance is used to separate bean

settings into several components, for example settings of channel is inherited in the bean with settings of the

main peripheral module.

Settings in Processor Expert

The Descendant bean contains a property which allows selecting an ancestor bean from a predefined list of

templates. The bean is created after selection of an appropriate template name (or bean name) from the list of the

templates fitting the specified interface. Any previously used ancestor bean is discarded.

Figure 3.10 - Example of selecting from available ancestor beans.

Press the button to edit properties, methods or events of a selected ancestor bean in the Bean Inspector.

Processor Expert allows the user to select from several ancestors that implement a required interface and are

registered by the descendant bean.

The ancestor bean is displayed under its descendant in the project structure tree in the project panel.

Figure 3.11 - Example of ancestor and descendant beans in the project panel tree.

An ancestor bean requires a list of methods and events (interface), which must be implemented by an ancestor

bean. The error is shown if the ancestor bean does not implement any of them (for example if the settings of the

descendant bean do not allow it to generate this method).

- 117 -

Processor Expert User's manual Application Design



Bean Sharing

Bean sharing allows the user to cause several beans to use capability of one bean with the way similar to

inheritance. This feature allows sharing of its resources and its drivers with other beans.

For example, beans may share an I2C bean for communication with peripherals connected to the I2C bus.

Settings in Processor Expert

A shared ancestor bean contains a property which allows the user to select existing or create a new shared

ancestor bean. The ancestor bean is included in the project tree as are the other beans. The ancestor bean may be

used with the descendant bean only if it was created from a template registered in the descendant bean or if the

bean type is registered in the descendant bean. It's recommended that you always create a shared ancestor bean

through a descendant bean.

Press the button to select an existing shared ancestor bean from the current project. Press the button to

select an existing or create a new ancestor bean using the Bean Wizard (see below).

Figure 3.12 - Example of popup menu for creating a new shared ancestor bean.

Selection/Creation Wizard

When a bean with a link to a shared ancestor bean is added to the project, the following "Selecting/Creating

Wizard" appears. This wizard helps you to select or create the shared ancestor bean quickly.

Figure 3.13 - Example of popup menu for creating new shared ancestor bean.

Run-time Resources Allocation

Processor Expert (generated code) does not check the usage of shared resources/code. It's up to the user to use

the correct run-time resources allocation of a shared ancestor bean. Usually it is not possible for a shared

ancestor bean to be used simultaneously by several beans.

- 118 -

Processor Expert User's manual Application Design



3.14. Pin Sharing

Pin sharing is the way, how multiple beans can use one pin of the CPU . Processor Expert supports the

following ways of pin sharing:

InputPin bean

This bean supports reading of input pin signal without any previous pin initialization. The feature can be used

only if the pin (port) contains RAW DATA register, which allows reading the input pin signal in any settings of

related peripherals. See bean documentation for more details. Note: InputPin bean is included in the installation

of Processor Expert only if any target CPU supports the feature mentioned above.

Design-Time and Run-Time Sharing

There is also possible to select pin sharing for the pin in the bean inspector, which is shared with another bean

(denoted "main" bean). In this case the pin must be allocated and initialized by the main bean. The shared bean

provides CPU specific verification testing if pin sharing is supported on target CPU with the main bean and

decides, if the sharing can be set in the initialization (design- time sharing), or if it is necessary to invoke a

method to select switch between main and shared bean (run-time sharing). It's allowed to set sharing of one pin

for several beans as well.

Pin sharing is advanced usage of the CPU peripherals and should be done only by skilled users. Pin sharing

allows advanced usage of the pins even on small CPU packages and allows application-specific usage of the

pins.

Pin sharing can be set in the bean inspector. The bean inspector must be switched into EXPERT mode , and

then the pin sharing button must be switched down. See picture, button at the right side of the second column.

Figure 3.14 - Pin Sharing Button

Design-time sharing does not need any user action in run-time. Some CPUs support usage of the pin by more

peripherals. For example input pin can be used as an input for capture and at the same time as an input for

another counter (EventCounter). Design-time sharing is indicated by single-color icon on the button

Run-time sharing means, that it's necessary to invoke bean method ConnectPin to connect bean to the shared

pin. And it's necessary to invoke main bean method to connect pin back to main bean. In fact the bean can

usually operate simultaneously, but they have no connection to the shared pins unless ConnectPin method is

executed. Run-time sharing is indicated by three-color icon on the button

If more beans share one pin, it's better to invoke method ConnectPin before any bean usage. It's allowed to

invoke this method also during design-time sharing - the method has no effect in this case. The method

ConnectPin is not generated by default and it must be turned on manually.

Shared pins are presented in the Target CPU view as well. The bean to pin connection line is red.

- 119 -

Processor Expert User's manual Application Design



3.15. Code Generation

Processor Expert | Generate Code '{ProjectName.mcp}'

Generate Code command initiates the code generation process. During this process source code modules

containing functionality of the beans contained in the project are generated. The project must be set-up correctly

for successful code generation. If the generation is error-free all generated source code files are saved to the

destination directory.

Processor Expert produces these files:

The existence of the files can be conditional to project or Processor Expert environment settings and their usage

by the beans.

Bean• module
This module with its header file is generated for every bean in the project with exception of some beans that

generate only an initialization code or special source code modules. Name of this file is the same as the name

of the bean.

Header file (.h) contains definitions of all public symbols, which are implemented in the bean module and

can be used in the user modules.

The module contains implementation of all enabled methods and may also contain some subroutines for

internal usage only. This module could be modified manually under certain conditions, but it is

recommended for experienced users only. See chapter 3.18 User Changes in Generated Code for details.

Processor Expert also allows to track and review changes in the generated modules. See chapter 3.15.2

Tracking Changes in Generated Code for details.

CPU• module
The CPU module is generated according to the currently active target CPU bean. The CPU module contains

additionally:

CPU- initialization code

interrupt- processing

Main• module
The main module is generated only if it does not already exist (if it exists it is not changed). Name of this

module is the same as the name of the project.

The main module contains the main function, which is called after initialization of the CPU (from the CPU

module). By default this function is generated empty (without any reasonable code). It is designed so that the

user will write his/her own particular code here.

Event• module
The event module is generated only if it does not exist. If it exists, only new events are added into the

module; user written code is not changed.

The event module contains all events selected in the beans. By default these event handler routines are

generated empty (without any meaningful code). It is considered that user will write his/her own particular

code here.

Event module can also contain the generated ISRs for the beans that require a direct interrupt handling (

Peripheral Initialization Beans). Generation of the ISRs is controlled by the project option Project Options |
Generate ISR.

Note: It is possible to change a name of the event module in ADVANCED view mode of the Bean Inspector.

- 120 -

Processor Expert User's manual Application Design



Method• list file with description of all beans, methods and events generated from your project. The name of

the file is {projectname}.txt or {projectname}.doc . This documentation can be found in the Documentation

folder of the Project Panel.

Signal• names
This is a simple text file {projectname}_SIGNALS.txt or {projectname}_SIGNALS.doc with a list of all used

signal names. The signal name can be assigned to an allocated pin in the bean properties (available in

ADVANCED view mode). This documentation can be found in the Documentation folder of the Project

Panel. See chapter 3.12 Signal Names for details.

XML• documentation containing the project information and settings of all beans in XML format. The

generated file {projectname}_Settings.xml can be found in the Documentation folder of the Project Panel. It

is updated after each successful code generation.

Shared• modules with shared code (the code which is called from several beans). Complete list of generated

shared modules depends on selected CPU, language, compiler and on the current configuration of your

project. Typical shared modules are:

IO_Map.h- 
Control registers and bit structures names and types definitions in C language.

IO_Map.c- 
Control registers variable declarations in C language. This file is generated only for the

HC(S)08/HC(S)12 versions.

Vectors.c- 
A source code of the interrupt vector table content.

PE_Const.h- 
Definition of the constants (speed modes, reset reasons). This file is included in every driver of the bean.

PE_Types.h- 
Definition of the C types (bool, byte, word, ...). This file is included in every driver of the bean.

PE_Error.h- 
Common error codes. This file contains definition of return error codes of bean's methods. See the

generated module for detailed description of the error codes. This file is included in every driver of the

bean.

PE_Timer- 
This file contains shared procedures for runtime support of calculations of timing constants.

{startupfile}.c- 
This external module (visible in the External Modules folder of the Project Panel) contains a platform

specific startup code and is linked to the application. The name of the file is different for the Processor

Expert versions. For datils on the use of the startupfile during the reset see chapter 3.6  Reset Scenario

With Processor Expert

"PESL".h- 
PESL include file. This file can be included by the user in his/her application to use the PESL library.

See chapter 3.19.1 Processor Expert System Library for details.

See also chapter Predefined types, macros and constants.

- 121 -

Processor Expert User's manual Application Design



3.15.1. Linker Dialog

The code generation process checks the setting of the selected target. If the selected CPU doesn't match a valid

setting of the linker for the current CodeWarrior target, the code generation process displays the following dialog:

Figure 3.15 - Linker Dialog

Following options are available:

Leave• the current setting - generate files to the current selected target without a change of the linker

Second• option automatically sets the linker setting according to the selected CPU, including linker settings

Create• new target - creates a new target and sets the linker and linker settings according to the selected

CPU. Generated files will be added into the new target. You can enter a name of the target. Settings of this
new target (i.e. entry point, libraries, access paths, target's file mappings etc.) has to be configured
manually by the user to configure the target to be built properly.

Click on the "OK" button to confirm the selection.

The "Targets" can be set for the project files in the CodeWarrior project window. To set the Target options,

double click on the name of the Target listed in the window. You can also change the setting using the command

{CurrentBuildTargetName} Settings (ALT+F7) in the Edit menu in the CodeWarrior main panel. The

following picture shows the "Targets" TAB in the CodeWarrior project window:

Figure 3.16 - Targets List in the CodeWarrior

- 122 -

Processor Expert User's manual Application Design



3.15.2. Tracking Changes in Generated Code

Processor Expert allows to compare generated modules with the previously generated ones after each code

generation which may prevent from unwanted changes in the bean modules. This function has to be enabled by

the Project Options | Track changes.

The 'Modified Files' dialog appears after the successful code generation and shows the list of the files that have

been modified by Processor Expert. The user can specify which files will be saved and will replace the old ones

using a check marks and a buttons 'All' and 'None'.

The user can also visually compare the changes in the currently selected file by pressing a button DIFF. Pressing

the 'OK' button will save all selected modules and replace the current ones.

Figure 3.17 - List of modyfied files

If the user presses the DIFF button, a file editor in a comparison mode is shown. It contains highlighted parts

that had been changed during the code generation. See chapter 2.16 File Editor for details.

- 123 -

Processor Expert User's manual Application Design



Figure 3.18 - A file before and after the generation

After the 'Modified Files' dialog, user can also review a list of automatically deleted unused files (The

Environment Options | Delete unused files environment option has to be enabled).

Figure 3.19 - List of unused files

- 124 -

Processor Expert User's manual Application Design



3.16. Code Optimizations

This chapter contains description of the ways how to setup Processor Expert and the beans to generate optimized

code. The following optimization regards only the High or Low level beans, not the Peripheral Initialization

beans.

Disabling unused methods

Notice: These optimization are not usable for the Peripheral Initialization Beans

When Processor Expert generates the code certain methods and events are enabled by default setting, even when

the methods or events are not needed in the application, and thus while they are unused, its code still can take

memory. Basically, the unused methods code is dead stripped by the linker but when the dependency among

methods is complex some code should not be dead stripped. When useless methods or events are enabled the

generated code can contain spare source code because of these unused methods or events. Moreover some

methods can be replaced by more efficient methods that are for special purposes and therefore these methods are

not enabled by default.

Disabling unused beans

Disable unused and test purpose beans or remove them from the project. Disabling of these beans is sufficient

because the useless code is removed but the bean setting remains in the project. If these beans are required for

later testing then add a new configuration to the project and disable these useless beans in the new configuration

only (the previous configuration will be used when the application is tested again). Moreover if it is required to

use the same bean with different setting in several configurations its possible to add one bean for each

configuration with same name and different setting.

Speed modes

Notice: These optimizations are not usable for the Peripheral Initialization Beans

Timed beans which depends on the CPU clock (such as timer, communication and conversion beans), may

support speed modes defined in the CPU bean (in EXPERT view level). The Processor Expert allows the user to

set closest values for the bean timing in all speed modes (if possible). If the requested timing is not supported by

the bean, for example if the CPU clock is too low for the correct function of the bean, the bean can be disabled

for the appropriate speed mode. The mode can be switched in the runtime by a CPU method. The bean timing is

then automatically configured for the appropriate speed mode or the bean is disabled (according to the setting).

Note, however, that use of speed modes adds extra code to the application. This code must be included to

support different clock rates. See speed mode details here.

See Configuration Inspector for more optimization settings.

See chapter Embedded Beans Optimizations for details on choosing and setting the beans to achieve optimized

code.

- 125 -

Processor Expert User's manual Application Design



3.17. Embedded Bean Optimizations

This chapter describes how the size and speed of the code could be optimized by choosing right bean for the

specific task. It should also give an advice how to setup beans to produce optimized code. The optimizations that

will be described regard only the High or Low level beans, not the Peripheral Initialization beans.

The sub-chapters explain the optimization of

General• Port I/O

Timer• beans

Communication• beans

3.17.1. General Port I/O Optimizations

Notice: These optimizations are not usable for the Peripheral Initialization Beans

ByteIO Bean Versus BitsIO Bean

ByteIO bean instead of BitsIO bean should be used when whole port is accessed. The BitsIO bean is intended for

accessing only part of the port (e.g. 4 bits of 8- bit port)

Using the BitsIO bean results more complex code because this bean provides more general code for the methods,

which allows access to only some of the bits of the port. On the other side, the ByteIO bean provides access only

to the whole port and thus the resulted code is optimized for such type of access.

BitsIO bean versus BitIO beans

In the case of using only a part of the port the multiple BitIO beans could be used. A better solution is to use the

BitsIO bean replacing multiple calls of BitIO bean's methods. The application code consist only of one method

call and is smaller and faster.

3.17.2. Timer Beans Optimizations

Notice: These optimizations are not usable for the Peripheral Initialization Beans

For better code size performance it's recommended do not use a bigger counter/reload/compare register for

timer than is necessary. Otherwise the code size generated by a bean may be increased (e.g. For 8-bit timer

choose 8bit timer register.

In some cases several timing periods are required when using timers (For example the TimerInt bean). The

Processor Expert allows changing the timer period during run-time using several ways (note that this is an

advanced option and the Bean Inspector Items visibility must be set to at least 'ADVANCED').

These ways of changing the run-time period of timer requires various amount of code and thus the total

application code size is influenced by the method chosen. When the period must be changed during run-time,

use fixed values for period instead of an interval if possible to save code. There are two possibilities (See chapter

2.5.3.1 Dialog Box for Timing Settings for details. ):

From• list of values - this allow to specify several (but fixed in run-time) number for given periods. This

allows only exact values - modes, listed in the listbox. The resulted code for changing the period is less

complex than using an interval.

From• time interval - this is an alternative to using 'list of values', which requires more code. Using an

interval allows setting whatever value specified by the bean during run-time. This code re-calculates the time

period to the CPU ticks and this value is used when changing the timer period.

- 126 -

Processor Expert User's manual Application Design



If the application requires only a few different timing periods, even if the functionality is the same for both

cases, the correct usage of list of periods produces smaller code compared to code using an interval.

3.17.3. Code Size Optimization of Communication Beans

Notice: These optimizations are not usable for the Peripheral Initialization Beans

Communication beans should be used with the smallest possible buffer. Thus the user should compute or check

the maximum size of the buffer during execution of the application. For this purpose the method

GetCharsInTxBuffer/GetCharsInTxBuffer (AsynchroSerial bean), which gets current size of a used buffer, can

be used after each calling of the SendBlock/RecvBlock method.

Use interrupts if you require faster application response. The interrupt routine is performed only at the event

time, i.e. the code does not check if a character is sent or received. Thus the saved CPU time can be used by

another process and application is faster.

Use polling mode instead interrupts if you require less code because usually overhead of interrupts is bigger

than overhead of methods in polling mode. But the polling mode is not suitable for all cases. For example when

you use the SCI communication for sending of the data only and a character is sent once in a while then it is

better to use the polling mode instead of using interrupt because it saves the code size, i.e. when the interrupt is

used an interrupt subroutine is needed and code size is increased.

Examples:

A module of an application sends once in a while one character to another device through the SCI channel. If the

delay between two characters is sufficient to sent one character at a time then the polling mode of the SCI (the

AsynchroSerial bean) should be used in this case.

A module of an application communicates with another device, i.e. it sends several characters at one time and

receives characters from the device. Thus the interrupt mode of the SCI (the AsynchroSerial bean) should be

used in this case because when a character is received the interrupt is invoked and the underlying process of the

application need not check if a character is received. When a buffer for sending is used, the characters are saved

into the buffer and AsynchroSerial's service routine of the interrupt sends these characters without additional

code of the application.

Note: The polling mode of the bean is switched on by disabling of the Interrupt service of the bean

(AsynchroSerial, AsynchroMaster, AsynchroSlave, …)

- 127 -

Processor Expert User's manual Application Design



3.18. User Changes in Generated Code

It's necessary to say at the beginning of the chapter, that modification of the generated code may be done only at

user's own risk. Generated code was thoroughly tested by the skilled developers and the functionality of the

modified code cannot be guaranteed. We strongly don't recommend modification of the generated code to the

beginners. See more information for generated modules in chapter Code Generation.

To support user changes in the bean modules, Processor Expert supports the following features:

1. CH file - manifest constants

Processor Expert automatically produce list of manifest constants for all beans, which encapsulate any CPU

peripheral and modifies any of the CPU control registers. The name of each manifest constant is in the following

format:

C_[bean+method]_reg_[register name][additional-info]

where

[bean+method]• is name of bean (and optionally also bean's method),

[register• name] is name of the control register,

[additional-info]• is additional information about usage of the value (modification of one bit, bits mask or

whole value).

These constants may be used to write user code, which reflects the bean settings. Once the constant is generated

into the CH file, it is preserved there even it is already not used in the bean module. The most important

advantage of these constants is, that small changes in the bean settings (for example timing) does not cause

change of the bean module, but the only CH file is changed.

The name of the CH file is derived from the CPU bean name ([CPUbean].CH). To generate CH file it is

necessary to set the following option: Project Options | Generate manifest constants. CH file is generated also

while smart generation of bean modules code, see paragraph 3 for details. CH file is always overwritten during

the code generation.

2. Mode of code generation for bean modules

It's possible to select mode of the code generation for each bean, the following options can be found in the

bean's pop-up menu in the project panel:

Code Generation

• Always Write Generated Bean Modules (default) - generated bean modules are always written to disk

and any existing previous module is overwritten

• Preserve User Changed in Generated Bean Modules - smart detection of user changes. See paragraph

4 for details.

• Don't Write Generated Bean Modules - the code from bean is not generated. Any initialization code of

the bean, which resides in the CPU bean, interrupt vector table and shared modules are updated.

The mode of code generation is indicated as a bean's status in the project panel. This mode influences only the

generation of bean modules (bean.c, bean.h).

- 128 -

Processor Expert User's manual Application Design



3. Mode of code generation for non-bean modules

Processor Expert also allows to enable/disable generation of the modules that not related to a specific bean or

that are common for several beans. This option can be configured in the pop-up menu of the module in the

Project Panel. Current enable/disable state of this option is signalled by the icon near the bean module name in

the Project Panel ( - enabled, - disabled).

Code Generation

Always• Write (default) - generated bean modules are always written to disk and any existing previous

module is overwritten

Don't• Write - the content of the module is not overwritten. Please notice that this can lead to malfunction of

beans dependent on the module when the module update is required due to bean's settings change.

4. Smart generation of the code of bean modules

Notice: Smart user changes preservation is available only in the 56F800/E version.

To enable smart generation of the bean modules, it's necessary to set the project option Project Options |
Preserve user changes . (option Project Options | Generate manifest constants is turned on automatically).

After setting this option it's necessary to generate the code and after that Processor Expert can detect and

preserve changes in the generated code of bean modules. In this mode it is still possible to select for each bean, if

the code will be overwritten, not written or if the user changes will be preserved (see paragraph 2). In case of

first use of the bean, the generated code will be always overwritten.

The user can make any change in the generated bean module. If the Processor Expert detects during code

generation, that the bean module was changed, the user is informed immediately. Status icon of the bean with

changed module is red . Until the generated code is not changed, the user changes are completely preserved.

The generated code of the bean module may be changed from several reasons:

the• user changed the bean settings

the• user changed settings of another bean, and the change is reflected to the bean's module

the• bean driver was changed (updated)

The following changes in the generated code may be updated automatically into the bean's module:

new• method is generated into the bean's module - this method is automatically added into the bean's module

any• method from the bean's module is not generated - if the method code is not changed in the user code, the

method is automatically removed from the bean's module.

If• the code of the generated method has changed and it wasn't changed by the user, the code of method is

automatically updated.

In all other cases the user must select how to handle the changed code (see the following picture):

Don't• overwrite the bean module (default) - the user changes are preserved and the generated code is ignored

Overwrite• the bean module - the user changes are discarded and the user module is rewritten by the new

generated code

Never• overwrite all the bean modules - the mode of the code generation for the bean is "Don't Write

Generated Code", see paragraph 2 for details

Always• overwrite all the bean modules - the mode of the code generation for the bean is "Always Write

Generated Code", see paragraph 2 for details

Always• overwrite all modules (turn off smart generation) - smart generation of the code if switched off, all

user modules are overwritten.

- 129 -

Processor Expert User's manual Application Design



Figure 3.20 - User Changes Handling Options

Viewing User Changes in a Bean Module

The user changes done in a bean module or bean header module can be viewed using a bean pop-up menu

commands Compare With Previously Generated Module and Compare With Previously Generated Header
Module. See chapter 2.3.4 Beans Pop-up Menus for details. The user can also enable reviewing all changes done

into the generated code after each code generation. See chapter 3.15.2 Tracking Changes in Generated Code for

details.

3.19. Low-level Access to Peripherals

In some cases, a non-standard use of the peripheral could be required and it might be more efficient to write a

custom peripheral driver from scratch than to use the bean. In addition, there are special features present only on

a particular chip derivative (not supported by the bean) that could make the user routines more effective;

however, the portability of such code is reduced.

Peripheral Initialization

It is possible to use Processor Expert to generate only the initialization code (function) for a peripheral using a

Peripheral initialization beans. The user can choose a suitable Peripheral initialization bean for the given

peripheral using a Bean Selector under a Peripherals tab. See chapter 2.4 Bean Selector for details. The initial

values which will be set to the peripheral control registers could be viewed by the Peripheral Initialization

window. See chapter 2.14 Peripheral Initialization for details.

- 130 -

Processor Expert User's manual Application Design



Peripheral Driver Implementation

The rest of the peripheral driver can be implemented by the user using one of the following approaches:

Processor• Expert System Library (PESL)

Direct• control of the CPU registers

Warning: Incorrect use of PESL or change in registers of the peripheral, which is controlled by any Bean
driver can cause the incorrect Bean driver function.

3.19.1. Processor Expert System Library

Notice: PESL is available only in the HC(S)12 and 56F800/E versions.

PESL (Processor Expert System Library) is dedicated to power programmers, who are familiar with CPU

architecture - each bit and each register. PESL provides macros to access the peripherals directly. It should be

used only in special cases when the low-level approach is necessary.

PESL is peripheral oriented and complements with Embedded Beans, which are functionality oriented. While

Embedded Beans provide very high level of project portability by stable API and inheritance feature across

different CPU/DSP/PPC architectures, PESL is more architecture dependent.

PESL commands grouped by the related peripheral can be found in Processor Expert Project Panel in PESL

folder.

Convention for PESL macros

Each macro name of the PESL consists of the following parts:

PESL(device name, command, parameter)

Example

PESL(SCI0, SCI_SET_BAUDRATE, 0);

For details on PESL, its commands and parameters, see PESL Library user manual using the Help command of

PESL project panel folder pop-up menu.

3.19.2. Direct Access to Peripheral Registers

The direct control of the Peripheral's registers is a low-level way of creating peripheral driver which requires a

good knowledge of the target platform and the code is typically not portable to different platform. However, in

some cases is this method more effective or even necessary to use (in the case of special chip features not

encapsulated within the Embedded bean implementation). See chapter 3.19 Low-level Access to Peripherals for

details.

The common basic peripheral operations are encapsulated by the PESL library commands which is effectively

implemented using the simple control register writes. See chapter 3.19.1 Processor Expert System Library for

details.

- 131 -

Processor Expert User's manual Application Design



Register Access Macros

Processor Expert defines a set of C macros providing an effective access to a specified register or its part. The

definitions of all these macros are in the PE_Types.h . The declaration of the registers which could be

read/written by the macros is present in the file IO_Map.h.

Whole Register Access Macros

getReg{w}• (RegName) - Reads the register content

setReg{w}• (RegName, RegValue) - Sets the register content

Register Part Access Macros

testReg{w}Bits• (RegName, GetMask) - Tests the masked bits for non-zero value

clrReg{w}Bits• (RegName, ClrMask) - Sets a specified bits to 0.

setReg{w}Bits• (RegName, SetMask) - Sets a specified bits to 1.

invertReg{w}Bits• (RegName, InvMask) - Inverts a specified bits.

clrSetReg{w}Bits• (RegName, ClrMask, SetMask) - Clears bits specified by ClrMask and sets bits specified

by SetMask

Access To Named Bits

testReg{w}Bit• (RegName, BitName) - Tests whether the bit is set.

setReg{w}Bit• (RegName, BitName) - Sets the bit to 1.

clrReg{w}Bit• (RegName, BitName) - Sets the bit to 0.

invertReg{w}Bit• (RegName, BitName) - Inverts the bit.

Access To Named Groups of Bits

testReg{w}BitGroup• (RegName, GroupName) - Test a group of the bit for non-zero value

getReg{w}BitGroupVal• (RegName, GroupName) - Read a value of the bits in group

setReg{w}BitGroupVal• ( RegName, GroupName, GroupVal ) - Sets the group of the bits to the specified

value.

RegName - Register name

BitName - Name of the bit

GroupName - Name of the group

BitMask - Mask of the bit

BitsMask - Mask specifying one or more bits

BitsVal - Value of the bits masked by BitsMask

GroupMask - Mask of the group of bits

GetMask - Mask for reading bit(s)

ClrMask - Mask for clearing bit(s)

SetMask - Mask for setting bit(s)

InvMask - Mask for inverting bit(s)

RegValue - Value of the whole register

BitValue - Value of the bit (0 for 0, anything else = 1)

- 132 -

Processor Expert User's manual Application Design



{w} - Width of the register (8, 16, 32). The available width of the registers depends on used platform.

Example

Assume that we have a CPU which has a PWMA channel and it is required to set three bits (0,1,5) in the

PWMA_PMCTL to 1. We use the following line:

  setRegBits(PWMA_PMCTL,35);           /* Run counter */

3.20. Import 56800/E Project From Quick-Start

Imports a Quick-Start project for 56800/E derivatives and creates appropriate Processor Expert project with

corresponding CPU bean and Peripheral Initialization beans. Settings of the Quick-Start project are imported

from the file AppConfig.h and these settings are applied to PE beans.

The settings are converted automatically, the only user input is to select the path to the AppConfig.h file.

Imported beans are added into a new PE configuration, the name of this configuration is based on the path to the

file AppConfig.h. The beans currently present in the project are deleted (if there are any) and all PE

configurations are removed.

Option Project Options | Generate manifest constants for all bean modules is turned on and PESL support is

also enabled.

CPU bean contains necessary settings for ROM-RAM copy routines. After the CPU bean is imported these

properties should be set according to the user application intentions. These properties can be found in the CPU

Build options tab. There are following properties:

xROM-xRAM• mode (should be used when xROM-xRAM copy routine is required, typically when an

application is placed in the internal FLASH)

pROM-xRAM• mode (should be used when pROM-xRAM copy routine is required, typically when an

application is placed in the internal FLASH)

Peripheral Initialization beans provide after-reset initialization of the corresponding CPUs on-chip peripherals

and also provide the Init method to apply these settings from a user code. User can use the low-level techniques

to write his/her code.

Limitations

Processor• Expert beans support only valid peripheral settings. All invalid (not supported on the target CPU)

settings of the Quick-Start project are ignored.

Symbols• from AppConfig.h are not preserved. Symbols from CH file (manifest constants) may be used

instead.

- 133 -

Processor Expert User's manual Application Design



4. Processor Expert Tutorials
This tutorial is provided for embedded system designers who wish to learn quickly how to use the exclusive

features of Processor Expert. Reading this tutorial may be all you need to start using Processor Expert for your

own application.

The following tutorials are available:

HC08 Project 1

HC08 Project 2

4.1. Tutorial Project 1 for Freescale HC08 Microcontrollers

This simple animated tutorial describes a periodically blinking LED project. The LED is connected to one pin of

the CPU and it is controlled by a periodical timer interrupt. Please follow the instructions and animations

showing the actions.

Click here to start the tutorial

4.2. Tutorial Project 2 for Freescale HC08 Microcontrollers

This tutorial describes a demo project of a simple LED controller. The LED controller has two color LEDs - a

red and a green one - and one command button.

How it works

The button sends commands (external interrupts) to CPU through one pin and the CPU switches the red and

green LEDs lights on or off. If you press the key you can see that lights of two LEDs have been changed. One of

them is switched off and the other one is switched on. At the beginning the green LED is on and the red one is

off.

Minimal required hardware design

In the demo application the following components are used:

CPU1. MC68HC908AZ60 Freescale HC08 processor family

Red2. LED - connected to CPU output pin PTB0

Green3. LED - connected to CPU output pin PTB1

Button4. - connected to CPU input pin PTG0

Beans

This simple demo-project uses the following beans:

MC68HC908AZ601. - CPU bean (Freescale HC08 processor family)

PinIO2. - General 1-bit input/output bean - outputs to LEDs. The LEDs receive 1 bit data which specifies

whether the light should switch on or off (value 0 = switch off, value 1 = switch on).

ExtInterrupt3. - External Interrupt bean - interrupt from button. Pressing the button calls an external

interrupt which switches the state of the LEDs (on/off).

steps

There are step-by-step instructions how to create this tutorial project. This tutorial goes through the following

- 134 -

Processor Expert User's manual Processor Expert Tutorials



steps:

Creating1. a new project

Adding2. beans

Code3. Generation

Adding4. the On-Event Code

Note: This demo project does not care about non-defined states on the output of the key during the process of key

pressing. This may result in the fact that state of two LEDs stays apparently unchanged.

4.2.1. Tutorial for Freescale HC08 Project 2 Step 1

Creating a New Project

If1. you have the CodeWarrior already running, click on the command New Project... in the menu File in

the CodeWarrior window in order to create a new project. Otherwise, start the CodeWarrior and click on

the button Create empty project.

The2. Procect Wizard dialog window appears. Enter the name of the project - "LED". Click on the next

button.

Select3. MC68HC908AZ60 CPU and the Full Chip Simulation as the default connection. Click on the next

button.

Skip4. addition of existing files by clicking on the "next" button.

Select5. the Processor Expert from Rapid Application Development Options and click on the finish button.

- 135 -

Processor Expert User's manual Processor Expert Tutorials



Confirm6. the dialog Select configurations by clicking on the "OK" button.

Now the new empty project is created and ready for adding new beans.

Next step

Go to   Step 2 - Adding beans to the project.

- 136 -

Processor Expert User's manual Processor Expert Tutorials



4.2.2. Tutorial for Freescale HC08 Project 2 Step 2

Adding Beans to the Project

In the context of the LED controller, you will add two BitIO beans for the Red LED and the Green LED, and an

ExtInt bean for the Button.

If1. the Bean Selector window is not already opened, open it using menu Processor Expert | View | Bean
Selector

Double2. click the BitIO bean in the folder PortI/O (subfolder of CPU Internal Peripherals folder) in the

Bean selector window.

You3. will be asked whether to enable the bean in all configurations. Choose Yes.

New4. bean is added to the project. Switch to Processor Expert project tab in codewarrior's project panel.

(See picture below). Don't worry about red exclamation mark beside a new bean. It means that error is

present - bean has not been set-up properly yet.

Open5. the Bean Inspector window by double click on the new bean (Bit1:BitIO) in Processor Expert

- 137 -

Processor Expert User's manual Processor Expert Tutorials



project panel (if the Bean Inspector hasn't been opened automatically). Automatical opening of the bean

inspector is influenced by environment settings ( See chapter 2.1.1 Processor Expert Options for details.)

Select6. Items visibility | Advanced view in the pop-up menu of the Bean Inspector window in order to

display detailed settings of the bean. It is necessary for the following steps. See picture below.

Using7. Bean inspector set the bean properies as follows:

Bean- name: type RedLED into the edit box.

Pin- for IO: select PTB0_ATD0

Direction:- select Output

To8. setup generation of methods click on the Methods TAB and set all methods to "don't generate" and

NegVal method to 'generate code'. See the following picture:

- 138 -

Processor Expert User's manual Processor Expert Tutorials



click9. the Change bean icon item of the Bean menu in order to choose a new icon in the list. Select the

RLEDON icon and click the OK button. See the following pictures:

Using10. the procedure previously described for the red LED (steps a,b,c,d) add the green LED bean to the

project. The difference from the redLED bean is in the bean's propeties (pin, name and initial value).

Set the bean properties as follows:

Bean- name: type GreenLED into the edit box.

Pin- for IO: select PTB1_ATD1

Direction:- select Output

Init.- value: select 1

Click11. on the Methods TAB and switch all methods to "don't generate" and NegVal method to "generate

code" using button on the right.  

Click12. the Change bean icon item of the Bean menu in order to choose a new icon. Select the GLEDON
icon and click the OK button.

Now13. is time to add bean handling the button. Open the Bean Selector window again and double click the

ExtInt icon on the folder Interrupts in the in order to add the bean to the project. See picture below:

- 139 -

Processor Expert User's manual Processor Expert Tutorials



Open14. the bean inspector for the new bean (double click it in the project panel) and set the bean properties

as follows:

Bean- name: type Button into the edit box.

Pin:- select PTG0_KBD0

Generate- interrupt on: click the option in order to display the options. Select the falling edge.

Click15. on the Methods TAB and set all methods to "don't generate".

Click16. the Change bean icon item of the Bean menu in order to choose a new icon in the list. Select the

KEY icon and click the OK button.

You can see in the Target CPU window which pins of the chip are handled by the beans. You can easily identify

LED beans by their specific icons. If the Target CPU window is not opened, use menu command Processor
Expert | View | Target CPU package

- 140 -

Processor Expert User's manual Processor Expert Tutorials



After adding all beans, click Processor Expert | View | Resource Meter in order to open the Resource Meter

window and see remaining available resources of the chip.

Next step

Go to Step 3 - Code Generation.

- 141 -

Processor Expert User's manual Processor Expert Tutorials



4.2.3. Tutorial for Freescale HC08 Project 2 Step 3

Code Generation

Click1. on the command Processor expert | Code Generation 'Led.mcp' in the CodeWarrior main menu

in order to run the code generation process

The code generation window shows the current state of code generation.

Note: There shouldn't be any errors in the Error window before code generation.

Code2. generation process. This process generates all source files from beans to the "Generated Code"

folder in the CodeWarrior project window. The other modules can be found in the "User modules" folder

in the CodeWarrior project window. The generated code is inserted only into the selected target in the

CodeWarrior project window. See the picture below.

Next Step

Go to Step 4 - Adding On-Event Code

- 142 -

Processor Expert User's manual Processor Expert Tutorials



4.2.4. Tutorial for Freescale HC08 Project 2 Step 4

Adding the On-Event Code

Switch1. to the Project panel (Processor expert tab in the CodeWarrior project panel). All the beans

(including CPU beans) in the project panel are organized in a tree. You may expand and collapse them by

clicking on the plus "+" or minus "-" sign. Bean's events and methods are present as a subnodes of the

bean node.

Note: By double-clicking on any event/method icon, you change its enable/disable state (you can do it also

in the bean inspector). You need to invoke code generation again to generate code according to the new

settings.

Click2. the "+" sign to expand the Button bean and display its events and methods.

Double-click3. the OnInterrupt event from the Button bean to open and find out the position of this event

in code. See the picture below.

Enter4. the following lines to the body of the Button_OnInterrupt function:

RedLED_NegVal ();

- 143 -

Processor Expert User's manual Processor Expert Tutorials



GreenLED_NegVal ();

The first line is a call of the method NegVal of the bean RedLED. The second line is a call of the method

NegVal of the bean GreenLED. Calling syntax of all bean's methods is 'BeanName'_'MethodName'();

Finally,5. to create a binary executable file click on "Make" icon in the CodeWarrior Project Window.

HCS12 Project 1

HCS12 Project 2

4.3. Tutorial Project 1 for Freescale HCS12 Microcontrollers

This simple animated tutorial describes a periodically blinking LED project. The LED is connected to the one

pin of the CPU and it is controlled by a periodical timer interrupt. Please follow the instructions and animations

showing the actions.

Click here to start the tutorial

4.4. Tutorial Project 2 for Freescale HCS12 Microcontrollers

This tutorial describes a demo project of a simple LED controller. The LED controller has two color LEDs - a

red and a green one - and one command button.

How it works

The button sends commands (external interrupts) to CPU through one pin and the CPU switches the red and

green LEDs lights on or off. If you press the key you can see that lights of two LEDs have been changed. One of

them is switched off and the other one is switched on. At the beginning the green LED is on and the red one is

off.

Minimal required hardware design

In the demo application the following components are used:

CPU1. MC9S12DP256 Freescale processor (HCS12 family)

Red2. LED - connected to CPU output pin PB0_ADDR0_DATA0

Green3. LED - connected to CPU output pin PB1_ADDR1_DATA1

Button4. - connected to CPU input pin PH0_KWH0_MISO1

Beans

This simple demo-project uses the following beans:

MC9S12DP2561. - CPU bean (Freescale HCS12 processor family)

BitIO2. - General 1-bit input/output bean - outputs to LEDs. The LEDs receive 1 bit data which specifies

whether the light should switch on or off (value 0 = switch off, value 1 = switch on).

- 144 -

Processor Expert User's manual Processor Expert Tutorials



ExtInterrupt3. - External Interrupt bean - interrupt from button. Pressing the button calls an external

interrupt which switches the state of the LEDs (on/off).

steps

There are step-by-step instructions how to create this tutorial project. This tutorial goes through the following

steps:

Creating1. a new project

Adding2. beans

Generating3. Code

Adding4. the On-Event Code

Note: This demo project does not care about non-defined states on the output of the key during the process of key

pressing. This may result in the fact that state of two LEDs stays apparently unchanged.

4.4.1. Tutorial for Freescale HCS12 Project 2 Step 1

Creating a New Project

Click1. on the command "New" in the menu "File" in the CodeWarrior Main panel window in order to

create a new project.

Select2. "HC(S)12 New Project wizard" in the "New" dialog window and enter the name of the project -

LED.

- 145 -

Processor Expert User's manual Processor Expert Tutorials



In3. the New Project Wizard window Choose CPU (MC9S12DP256) and click "next" button.

Choose4. "C language" and click "next" button.

- 146 -

Processor Expert User's manual Processor Expert Tutorials



Choose5. "yes" in the "Would you like to use Processor Expert dialog" and click "next" button.

Choose6. "no" in the "Do you want to creat a project set up fot PC-lit? dialog" and click "next" button.

Choose7. "none" in the floating point format support selection dialog. click "next" button.

Choose8. "small" memory model. click "next" button.

Now the new empty project is created and ready for adding new beans.

Next step

Go to   Step 2 - Adding beans to the project.

4.4.2. Tutorial for Freescale HCS12 Project 2 Step 2

Adding Beans to the Project

In the context of the LED controller, you will add two BitIO beans for the Red LED and the Green LED, and an

ExtInt bean for the Button.

If1. the Bean Selector window is not already opened, open it using menu Processor Expert | View | Bean
Selector

Double2. click the BitIO bean in the folder PortI/O (subfolder of CPU Internal Peripherals folder) in the

Bean selector window.

- 147 -

Processor Expert User's manual Processor Expert Tutorials



If3. you will be asked whether to enable the bean in all configurations. Choose Yes. (This dialog box could

be enabled or disabled in environment options.)

New4. bean is added to the project. Switch to Processor Expert project tab in codewarrior's project panel.

(See picture below). Don't worry about red exclamation mark beside a new bean. It means that error is

present - bean has not been set-up properly yet.

Open5. the Bean Inspector window by double click on the new bean (Bit1:BitIO) in Processor Expert

project panel (if the Bean Inspector hasn't been opened automatically). Automatical opening of the bean

inspector is influenced by environment settings (See chapter 2.1.1 Processor Expert Options for details.)

Select6. Items visibility | Advanced view in the pop-up menu of the Bean Inspector window in order to

display detailed settings of the bean. It is necessary for the following steps. See picture below.

Using7. Bean inspector set the bean properties as follows:

Bean- name: type RedLED into the edit box.

Pin- for IO: select PB0_ADDR0_DATA0

Direction:- select Output

- 148 -

Processor Expert User's manual Processor Expert Tutorials



To8. setup generation of methods click on the Methods TAB and set all methods to "don't generate" and

NegVal method to 'generate code'. See the following picture:

click9. the Change bean icon item of the Bean menu in order to choose a new icon in the list. Select the

RLEDON icon and click the OK button. See the following pictures:

 

- 149 -

Processor Expert User's manual Processor Expert Tutorials



Using10. the procedure previously described for the red LED (steps a,b,c,d) add the green LED bean to the

project. The difference from the redLED bean is in the bean's properties (pin, name and initial value).

Set the bean properties as follows:

Bean- name: type GreenLED into the edit box.

Pin- for IO: select PB1_ADDR1_DATA1

Direction:- select Output

Init.- value: select 1

Click11. on the Methods TAB and switch all methods to "don't generate" and NegVal method to "generate

code" using button on the right.  

Click12. the Change bean icon item of the Bean menu in order to choose a new icon. Select the GLEDON
icon and click the OK button.

Now13. is time to add bean handling the button. Open the Bean Selector window again and double click the

ExtInt icon on the folder Interrupts in the in order to add the bean to the project. See picture below:

Open14. the bean inspector for the new bean (double click it in the project panel) and set the bean properties

as follows:

Bean- name: type Button into the edit box.

Pin:- select PH0_KWH0_MISO1

Generate- interrupt on: click the option in order to display the options. Select the falling edge.

- 150 -

Processor Expert User's manual Processor Expert Tutorials



Click15. on the Methods TAB and set all methods to "don't generate".

Click16. the Change bean icon item of the Bean menu in order to choose a new icon in the list. Select the

KEY icon and click the OK button.

You can see in the Target CPU window which pins of the chip are handled by the beans. You can easily identify

LED beans by their specific icons. If the Target CPU window is not opened, use menu command Processor
Expert | View | Target CPU package

After adding all beans, click Processor Expert | View | Resource Meter in order to open the Resource Meter

window and see remaining available resources of the chip.

- 151 -

Processor Expert User's manual Processor Expert Tutorials



Next step

Go to Step 3 - Code Generation.

4.4.3. Tutorial for Freescale HCS12 Project 2 Step 3

Code Generation

Click1. on the command Processor expert | Generate Code 'Led.mcp' in the CodeWarrior main menu in

order to run the code generation process

The code generation window shows the current state of code generation.

Note: There shouldn't be any errors in the Error window before code generation.

The2. code generation process generated all source files from beans to the "Generated Code" folder in the

CodeWarrior project window. The other modules can be found in the "User modules" folder in the

CodeWarrior project window. The generated code is inserted only into the selected target in the

CodeWarrior project window. See the picture below.

- 152 -

Processor Expert User's manual Processor Expert Tutorials



Next Step

Go to Step 4 - Adding On-Event Code

4.4.4. Tutorial for Freescale HCS12 Project 2 Step 4

Adding the On-Event Code

Switch1. to the Project panel (Processor expert tab in the CodeWarrior project panel). All the beans

(including CPU beans) in the project panel are organized in a tree. You may expand and collapse them by

clicking on the plus "+" or minus "-" sign. Bean's events and methods are present as a subnodes of the

bean node.

Note: By double-clicking on any event/method icon, you change its enable/disable state (you can do it also

in the bean inspector). You need to invoke code generation again to generate code according to the new

settings.

Click2. the "+" sign to expand the Button bean and display its events and methods.

- 153 -

Processor Expert User's manual Processor Expert Tutorials



Double-click3. the OnInterrupt event from the Button bean to open and find out the position of this event

in code. See the picture below.

Enter4. the following lines to the body of the Button_OnInterrupt function:

RedLED_NegVal ();
GreenLED_NegVal ();

The first line is a call of the method NegVal of the bean RedLED. The second line is a call of the method

NegVal of the bean GreenLED. Calling syntax of all bean's methods is 'BeanName'_'MethodName'();

Finally,5. to create a binary executable file click on "Make" icon in the CodeWarrior Project Window.

56800 Project 1

56800 Project 2

- 154 -

Processor Expert User's manual Processor Expert Tutorials



56800 Project 3

4.5. Tutorial Project 1 for Freescale 56800/E Microcontrollers

This simple animated tutorial describes a periodically blinking LED project. The LED is connected to one pin of

the CPU and it is controlled by a periodical timer interrupt. Please follow the instructions and animations

showing the actions.

Note: The project is prepared for the 56F8346 EVM board, but can be simply applied on any other hardware by

selecting the different CPU and its resources.

This tutorial is not included in this PDF version of the document.

4.6. Tutorial Project 2 for Freescale 56800 Microcontroller family

This tutorial describes a demo project for a simple LED controller. The LED controls two color LEDs on the

EVM (evaluation module) - a red and a green one - and one command button using the EVM's IRQB button.

How it works

The button sends a commands (via an external interrupt) to CPU through one pin and the CPU turns the red and

green LEDs lights on or off. If you press the key you can see that lights of two LEDs have been changed. One of

them is switched off and the other one is switched on. At the beginning the green LED is on and the red one is

off.

Minimal required hardware design

In this demo application the 56F8346 EVM board is used.

Beans

This simple demo-project uses the following beans:

M568346E1. - CPU bean (Freescale 56800 processor family)

BitIO2. - General 1-bit input/output bean - outputs to the LEDs. The LEDs use 1 bit of data specifying

whether the light should switch on or off (value 0 = switch off, value 1 = switch on).

ExtInterrupt3. - External Interrupt bean - interrupt from button. Pressing the button calls an external

interrupt which switches the state of the LEDs (on/off).

Steps

There are step-by-step instructions how to create this tutorial project.

This tutorial goes through the following steps:

Creating1. a new project

Adding2. beans

Code3. generation

Adding4. the On-Event Code

Note: This demo project does not care about non-defined states on the output of the key during the process of key

pressing. This may result in the fact that state of two LEDs stays apparently unchanged.

- 155 -

Processor Expert User's manual Processor Expert Tutorials



4.6.1. Tutorial Freescale 56800 Project 2 Step 1

Creating a New Project

Steps

Click on the command "New" in the menu "File" in the CodeWarrior Main panel window in order to create a

new project.

New empty project

Select Processor Expert Stationery in the "New" dialog window and enter name of the project - LED.

Select CPU MC56F8346 which will be used in our project.

- 156 -

Processor Expert User's manual Processor Expert Tutorials



Next step

Go to Step 2 - Adding beans to the project.

4.6.2. Tutorial Freescale 56800 Project 2 Step 2

Adding Beans to the Project

Task

In this step you will add, set and connect the project's beans.

In the context of the LED controller, you will add two BitIO beans, one for the Red LED and the second one for

the Green LED, and an ExtInt bean for the IRQB Button.

Red LED

Double click the BitIO bean in the folder PortI/O in the Bean selector window.

- 157 -

Processor Expert User's manual Processor Expert Tutorials



Select "View | Advanced view" in the pop-up menu of the Bean Inspector window in order to display detailed

settings of the bean. This is necessary for the following steps. See picture below.

For the RedLED, set the properties of the bean as follows:

Bean• name : type RedLED into the edit box.

Pin• for IO: select GPIOC0_SCLK1

Direction• : select Output

- 158 -

Processor Expert User's manual Processor Expert Tutorials



Methods: click on the Methods TAB and set NegVal method to "generate code". We use the NegVal (Negate

Value) method to toggle the value of the GPIO pin, thus changing the LED connected to the pin from on to off or

vice versa.

Bean icon: click the Change bean icon item of the Bean menu in order to choose a new icon in the list. Select

the RLEDON icon and click the OK button.   Different icons allows the +user to easily distinguish beans,

especially in the large projects.

Green LED

Using the procedure previously described for the Red LED, add the Green LED bean to the project.

Properties:For the GreenLED, set the bean as follows:

Bean• name: type GreenLED into the edit box.

- 159 -

Processor Expert User's manual Processor Expert Tutorials



Pin• for IO:select GPIOC2_MISO1

Direction:• select Output

Init.• value: select 1 to turn on the LED initially

Methods: click on the Methods TAB and set NegVal method "generate code". See the following picture:

Bean icon: click the Change bean icon item of the Bean menu in order to choose a new icon. Select the

GLEDON icon and click the OK button. See the following pictures:

You can see in the Target CPU window where the GreenLED bean and RedLED bean are connected (the

appropriate pins is colored in yellow). If the Target CPU window is not already opened, choose Processor
Expert|View|Target CPU

Button

Double click the ExtInt icon on the folder Interrupts in the Bean Selector window in order to add the bean to the

project. See picture below:

For the button, set the bean as follows:

Bean• name: type Button into the edit box.

Pin:• select IRQB_B

Generate• interrupt on: click the option in order to display the options. Select the falling edge.

Methods: click on the Methods TAB and set all methods to "don't generate ".

You can see in the Target CPU window where the Button bean is connected (the pin is colored in yellow). If the

- 160 -

Processor Expert User's manual Processor Expert Tutorials



Target CPU window is not opened, click Processor Expert | View | Target CPU

Note: After adding all beans, you can click Processor Expert|View|Resource Meter in order to open the

Resource Meter window and see remaining available resources of the chip.

Next step

Go to Step 3 - Code Generation

4.6.3. Tutorial Freescale 56800 Project 2 Step 3

Code Generation

Click on the command " Generate Code {project} " in the CodeWarrior main menu in order to run the code

generation process.

The code generation process window shows you the running state of code generation.

Note: There shouldn't be any errors in the Error window before code generation.

- 161 -

Processor Expert User's manual Processor Expert Tutorials



Code generation process. The code generation process generates all source code from beans and stores files in

the "Generated Code" folder in the CodeWarrior project window. The other modules can be found in the "User

modules" folder in the CodeWarrior project window. The generated code is inserted only into the selected target

in the 'Files' tab of the CodeWarrior project window. See the picture below.

Next Step

Go to Step 4 - Adding On-Event Code

- 162 -

Processor Expert User's manual Processor Expert Tutorials



4.6.4. Tutorial Freescale 56800 Project 2 Step 4

Adding the On-Event Code

Task

This step covers how to complete the project by writing the Interrupt Service Routine (ISR) that services the

IRQB button's external interrupt. This code is added to the file Events.c, which holds all user code for events

used in the project.

View of bean events and method

All the beans (including CPU beans) in the project panel are organized in a tree. You may expand and collapse

them by clicking on the plus "+" or minus "-" sign. There are all bean events and methods in the tree under bean.

Note: By double-clicking on any event/method icon, you change its enable/disable state (you can do it also in the

bean inspector). Then, click the code generation option to code design the code again.

Click the "+" sign to expand the Button bean and display its events and methods.

After code generation, a double-click on any event/method name opens the file editor/viewer at the position of

the event/method code.

Double-click the OnInterrupt event from the Button bean to open and find out the location of this event in code

(Events.c file). See the picture below.

- 163 -

Processor Expert User's manual Processor Expert Tutorials



Enter the following commands into the Events.c file:

RedLED_NegVal (); /*toggle state of Red LED*/
GreenLED_NegVal (); /*toggle state of Green LED*/

The first line is calling of the method NegVal of the bean RedLED. The second line is calling of the method

NegVal of the bean GreenLED. Calling syntax of all methods is 'BeanName'_'MethodName'();

To create a binary executable file click on "Make" icon in the CodeWarrior Project Window. See picture below.

Project is finished. Now you can upload it to the board and execute it.

- 164 -

Processor Expert User's manual Processor Expert Tutorials



4.7. Tutorial Project 3 for Freescale 568000 Microcontroller family

This tutorial exercise creates a project that flashes the LEDs of a DSP568346E EVM (evaluation module). This

project is more complicated than the previous ones. If you are a beginner try Project 1 first.

Follow these steps:

Create1. a 56836E project, using C with Processor Expert stationery.

Starta. the CodeWarrior IDE, if it is not started already.

Fromb. the main-window menu bar, select File > New. The New window appears.

Inc. the Project page, select (highlight) Processor Expert Stationery.

Ind. the Project name text box, enter a name for the project, such as LEDcontrol.

Clicke. the OK button. The New Project window replaces the New window.

Inf. the Project Stationery list, select the MC56F8346 entry.

Clickg. the OK button. The IDE:

Opens- the project window, docking it the left of the main window. This project window includes

a Processor Expert page.

Opens- the Target CPU window, as the following picture shows. This window shows the the

CPU package and peripherals view.

- 165 -

Processor Expert User's manual Processor Expert Tutorials



Opens- the Bean Selector window, behind the Target CPU window.

Select2. the sdm external memory target to use small data memory model and external memory.

Clicka. the project window's Targets tab. The Targets page moves to the front of the window.

Clickb. the target icon of the sdm external memory entry. The black arrow symbol moves to this icon,

confirming your selection.

Add3. six BitIO beans to the project.

Clicka. the project window's Processor Expert tab. The Processor Expert page moves to the front of

the window.

Makeb. the Bean Selector window visible:

Minimize- the Target CPU window.

Select- Processor Expert > View > Bean Selector, from the main-window menu bar.

Inc. the Bean Categories page, expand the entry CPU internal peripherals.

Expandd. the subentry Port I/O.

Double-clicke. the BitIO bean name six times. (folloging figure depicts this bean selection.) The IDE

adds these beans to your project; new bean icons appear in the project window's Processor Expert

page.

- 166 -

Processor Expert User's manual Processor Expert Tutorials



Add4. two ExtInt beans to the project.

Ina. the Bean Categories page of the Bean Selector window, expand the Interrupts subentry.

Double-clickb. the ExtInt bean name two times. The IDE adds these beans to your project; new bean

icons appear in the Processor Expert page.

Youc. may close the Bean Inspector window.

Rename5. the eight beans GPIO_C0 — GPIO_C3, GPIO_D6, GPIO_D7, IRQA, and IRQB.

Ina. the project window's Processor Expert page, right-click the name of the first BitIO bean. A

context menu appears.

Selectb. Rename Bean. A change box appears around the bean name.

Typec. the new name GPIO_C0, then press the Enter key. The list shows the new name; as the

following shows, this name still ends with BitIO.

Repeatd. substeps a, b, and c for each of the other BitIO beans, renaming them GPIO_C1, GPIO_C2,

GPIO_C3, GPIO_D6, and GPIO_D7.

Repeate. substeps a, b, and c for the two ExtInt beans, renaming them IRQA and IRQB. Now the

project panel should look like the following figure.

- 167 -

Processor Expert User's manual Processor Expert Tutorials



Update6. pin associations for each bean.

Ina. the Processor Expert page, double-click the bean name GPIO_C0. The Bean Inspector window

opens, displaying information for this bean.

Useb. standard window controls to make the middle column of the Properties page about 2 inches

wide.

Inc. the Pin for I/O line, click the triangle symbol of the middle-column list box. The list box opens.

Used. this list box to select GPIOC0_SCLK1_TB0_PHASEA1. Followin fFigure depicts this

selection.

Ine. the project window's Processor Expert page, select the bean name GPIO_C1. The Bean

Inspector information changes accordingly

Usef. the Pin for I/O middle-column list box to select GPIOC1_MOSI1_TB1_PHASEB1

Repeatg. substeps e and f, for bean GPIO_C2, to change its associated pin to

GPIOC2_MISO1_TB2_INDEX1

- 168 -

Processor Expert User's manual Processor Expert Tutorials



Repeath. substeps e and f, for bean GPIO_C3, to change its associated pin to

GPIOC3_SSA_B_TB3_HOME1

Repeati. substeps e and f, for bean GPIO_D6, to change its associated pin to GPIOD6_TxD1

Repeatj. substeps e and f, for bean GPIO_D7, to change its associated pin to GPIOD7_RxD1

Ink. the project window's Processor Expert page, select the bean name IRQA

The Bean Inspector information changes accordingly

Usel. the Pin middle-column list box to select IRQA_B

Repeatm. substeps k and l, for bean IRQB, to change its associated pin to IRQB_B

Youn. may close the Bean Inspector window

Enable7. BitIO SetDir, ClrVal, and SetVal functions.

Ina. the Processor Expert page, click the plus-sign control for the GPIO_C0 bean. The function list

expands: red X symbols indicate disabled functions, green check symbols indicate enabled functions

Double-clickb. function symbols as necessary, so that only SetDir, ClrVal, and SetVal have green

checks. (Following figure shows this configuration.)

Clickc. the GPIO_C0 minus-sign control. The function list collapses

Repeatd. substeps a, b, and c for beans GPIO_C1, GPIO_C2, GPIO_C3, GPIO_D6, and GPIO_D7

Enable8. ExtInt OnInterrupt, GetVal functions.

Ina. the Processor Expert page, click the plus-sign control for the IRQA bean. The function list

expands.

Double-clickb. function symbols as necessary, so that only OnInterrupt and GetVal have green check

symbols.

Clickc. the IRQA minus-sign control. The function list collapses.

Repeatd. substeps a, b, and c for bean IRQB.

Generate9. project code.

Froma. the main-window menu bar, select Processor Expert > Generate Code ‘LEDcontrol.mcp.'

(This selection shows the actual name of your project.) The IDE and PEI generate several new files

for your project.

Youb. may close all windows except the project window.

Update10. file Events.c.

Clicka. the project window's Files tab. The Files page moves to the front of the window.

Expandb. the User Modules folder.

Double-clickc. filename Events.c. An editor window opens, displaying this file's text. (To view

- 169 -

Processor Expert User's manual Processor Expert Tutorials



content of the file events.c click here)

Findd. the line IRQB_OnInterrupt().

Abovee. this line, enter the new line extern short IRQB_On;.

Insidef. IRQB_OnInterrupt(), enter the new line IRQB_On ^= 1;.

Findg. the line IRQA_OnInterrupt().

Aboveh. this line, enter the new line extern short IRQA_On;.

Insidei. IRQA_OnInterrupt(), enter the new line IRQA_On ^= 1;.

Savej. and close file Events.c.

Update11. file LEDcontrol.c.

Ina. the project window's Files page, double-click filename LEDcontrol.c (or the actual .c filename of

your project). An editor window opens, displaying this file's text.

Addb. custom code, to utilize the beans. (To view content of the file LEDcontrol.c click here, you can

use clipboard to transfer the source code to CodeWarrior).

Savec. and close the file.

Build12. and debug the project.

Froma. the main-window menu bar, select Project > Make. The IDE compiles and links your project,

generating executable code.

Debugb. your project, as you would any other CodeWarrior project.

Second Processor Expert tutorial exercise is complete. Downloading this code to a DSP56836E development

board should make the board LEDs flash in a distinctive pattern.

4.7.1. Listing of the File events.c

Manually written code is marked bold. Rest of the file is generated by Processor Expert.

/*

** ########################################################### **

** Filename : Events. C

**

** Project : LEDcontrol

**

** Processor : DSP56F836

**

** Beantype : Events

**

** Version : Driver 01.00

**

** Compiler : Metrowerks DSP C Compiler

**

** Date/ Time : 3/ 24/ 2003, 1: 18 PM

**

** Abstract :

**

** This is user's event module.

** Put your event handler code here.

**

- 170 -

Processor Expert User's manual Processor Expert Tutorials



** Settings :

**

**

** Contents :

**

** IRQB_ OnInterrupt -void IRQB_ OnInterrupt( void);

** IRQA_ OnInterrupt -void IRQA_ OnInterrupt( void);

**

**

** (c) Copyright UNIS, spol. s r. o. 1997-2002

**

** UNIS, spol. s r. o.

** Jundrovska 33

** 624 00 Brno

** Czech Republic

**

** http : www. processorexpert. com

** mail : info@ processorexpert. com 32

**

** #########################################################

*/

/* MODULE Events */

/* Including used modules for compilling procedure*/

#include "Cpu. h"

#include "Events. h"

#include "GPIO_ C0. h"

#include "GPIO_ C1. h"

#include "GPIO_ C2. h"

#include "GPIO_ C3. h"

#include "GPIO_ D6. h"

#include "GPIO_ D7. h"

#include "IRQA. h"

#include "IRQB. h"

/* Include shared modules, which are used for whole project*/

#include "PE_ Types. h"

#include "PE_ Error. h"

#include "PE_ Const. h"

#include "IO_ Map. h"

/*

** ==========================================================

** Event : IRQB_ OnInterrupt (module Events)

**

** From bean : IRQB [ExtInt]

- 171 -

Processor Expert User's manual Processor Expert Tutorials



** Description :

** This event is called when the active signal edge/ level

** occurs.

** Parameters : None

** Returns : Nothing

** ==========================================================

*/

#pragma interrupt called

extern short IRQB_ On;

void IRQB_ OnInterrupt(void)

{

  IRQB_ On ^= 1;

  /* place your IRQB interrupt procedure body here */

}

/*

** ==========================================================

** Event : IRQA_ OnInterrupt (module Events)

**

** From bean : IRQA [ExtInt]

** Description :

** This event is called when the active signal edge/ level

** occurs.

** Parameters : None

** Returns : Nothing

** =========================================================

*/

#pragma interrupt called

extern short IRQA_ On;

void IRQA_ OnInterrupt(void)

{

  IRQA_ On ^= 1;

  /* place your IRQA interrupt procedure body here */

}

/* END Events */

/*

** ########################################################

**

** This file was created by UNIS Processor Expert 03.15 for

** the Freescale DSP56x series of microcontrollers.

**

** ##########################################################

- 172 -

Processor Expert User's manual Processor Expert Tutorials



4.7.2. Listing of the file LEDcontrol.c

Manually written code is marked bold. Content of the main module.

/*

** ############################################################

** Filename : LEDcontrol. C

**

** Project : LEDcontrol

**

** Processor : 56F8346

**

** Version : Driver 01.00

**

** Compiler : Metrowerks DSP C Compiler

**

** Date/ Time : 3/ 24/ 2003, 1: 18 PM

**

** Abstract :

**

** Main module.

** Here is to be placed user's code.

**

** Settings :

**

**

** Contents :

**

** No public methods

**

**

** (c) Copyright UNIS, spol. s r. o. 1997-2002

**

** UNIS, spol. s r. o.

** Jundrovska 33

** 624 00 Brno

** Czech Republic

**

** http : www. processorexpert. com

** mail : info@ processorexpert. com

**

** ###########################################################

*/

/* MODULE LEDcontrol */

/* Including used modules for compilling procedure */

#include "Cpu. h"

#include "Events. h"

- 173 -

Processor Expert User's manual Processor Expert Tutorials



#include "GPIO_ C0. h"

#include "GPIO_ C1. h"

#include "GPIO_ C2. h"

#include "GPIO_ C3. h"

#include "GPIO_ D6. h"

#include "GPIO_ D7. h"

#include "IRQA. h"

#include "IRQB. h"

/* Include shared modules, which are used for whole project */

#include "PE_ Types. h"

#include "PE_ Error. h"

#include "PE_ Const. h"

#include "IO_ Map. h"

/*

* Application Description:

* LED program for the 56836 EVM.

*

* Pattern: "Count" from 0 to 63, using LEDs to represent the bits of

the number.

*

* Pressing the IRQA button flips LED order: commands that previously

went to LED1 go to LED6, and so forth.

* Pressing the IRQB button reverses the enabled/ disabled LED states.

*

*/

/* global used as bitfield, to remember currently active bits, used to

* enable/ disable all LEDs. */

long num = 0;

short IRQA_ On, IRQB_ On;

/* simple loop makes LED changes visible to the eye */

void wait( int);

voide wait( int count)

{

    int i;

    for (i= 0; i < count; ++ i);

}

/* set the given LED */

void setLED( int);

void setLED( int num)

{

- 174 -

Processor Expert User's manual Processor Expert Tutorials



    if (! IRQA_ On)

    {

        num = 7-num;

    }

    if (! IRQB_ On)

    {

        switch (num)

        {

            case 1: GPIO_ C0_ ClrVal(); break;

            case 2: GPIO_ C1_ ClrVal(); break:

            case 3: GPIO_ C2_ ClrVal(); break;

            case 4: GPIO_ C3_ ClrVal(); break;

            case 5: GPIO_ D6_ ClrVal(); break;

            case 6: GPIO_ D7_ ClrVal(); break;

        }

    }

    else

    {

        switch (num)

        {

            case 1: GPIO_ C0_ SetVal(); break;

            case 2: GPIO_ C1_ SetVal(); break;

            case 3: GPIO_ C2_ SetVal(); break;

            case 4: GPIO_ C3_ SetVal(); break;

            case 5: GPIO_ D6_ SetVal(); break;

            case 6: GPIO_ D7_ SetVal(); break;

        }

    }

}

/* clear the given LED */

void clrLED( int);

void clrLED( int num)

{

    if (! IRQA_ On)

    {

        num = 7-num;

    }

    if (IRQB_ On)

    {

        switch (num)

        {

            case 1: GPIO_ C0_ ClrVal(); break;

            case 2: GPIO_ C1_ ClrVal(); break;

            case 3: GPIO_ C2_ ClrVal(): break;

            case 4: GPIO_ C3_ ClrVal(); break;

            case 5: GPIO_ D6_ ClrVal(); break;

            case 6: GPIO_ D7_ ClrVal(); break;

- 175 -

Processor Expert User's manual Processor Expert Tutorials



        }

    }

    else

    {

        switch (num)

        {

            case 1: GPIO_ C0_ SetVal(); break;

            case 2: GPIO_ C1_ SetVal(); break;

            case 3: GPIO_ C2_ SetVal(); break;

            case 4: GPIO_ C3_ SetVal(); break;

            case 5: GPIO_ D6_ SetVal(); break;

            case 6: GPIO_ D7_ SetVal(); break;

        }

    }

}

#define CLEARLEDS showNumberWithLEDs( 0)

/* method to set each LED status to reflect the given number/ bitfield */

void shwNumberWithLEDs( long);

void showNumberWithLEDs( long num)

{

    int i;

    for (i= 0; i < 6; ++ i)

    {

        if (( num >> i)  1<br/>            setLED( i+ 1)

        else

            clrLED( i+ 1);

    }

}

/* Pattern: "Count" from 0 to 63 in binary using LEDs to represent bits

of the current number. 1 = enabled LED, 0 = disabled LED. */

void pattern();

void pattern()

{

    long i;

    int j;

    for (i= 0; i<= 0b111111; ++ i)

    {

        showNumberWithLEDs( i);

        wait( 100000);

    }

}

void main( void)

- 176 -

Processor Expert User's manual Processor Expert Tutorials



{

/*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/

PE_ low_ level_ init();

/*** End of Processor Expert internal initialization. ***/

/* Write your code here*/

#pragma warn_ possunwant off

IRQA_ On = IRQA_ GetVal() ? 1 : 0

IRQB_ On = IRQB_ GetVal() ? 1 : 0

for(;;); {

CLEARLEDS;

pattern();

}

#pragma warn_ possunwant reset

}

/* END LEDcontrol */

/*

** ###################################################################

/*

** This file was created by UNIS Processor Expert 03.15 for

** the Freescale DSP56x series of microcontrollers.

**

** ###############################################################

*/ 

- 177 -

Processor Expert User's manual Processor Expert Tutorials



5. Bean Wizard Description
Bean Wizard is a tool dedicated to the creation and edition of Embedded Beans. See chapter 3.2 Embedded

Beans for details. It provides a powerful interface for the composition of new beans, and generates the bean files.

Using Bean Wizard, the user can create new beans very quickly and easily without errors in the generated files.

The user needs only to determine the Properties, Methods and Events and write the necessary implementations

of the methods and events.

Bean Wizard facilitates the reusability of existing Beans and helps edit the source code (quick location, editor,

...).

Bean Wizard is an external tool, not a part of Processor Expert.

For further information, see Bean Wizard Help.

- 178 -

Processor Expert User's manual Index



- 179 -

Processor Expert User's manual Index

INDEX
56800 implementation details 98
About dialog 25
Adding Beans 37
Adding CPU 85
Application design 80
Application options 20
Available beans 37
Bean 14
Bean categories 83
Bean Inspector 44, 39
Bean levels 83
Bean optimizations 126
Bean related keywords 37
Bean Selector 37
Bean sharing 117
Bean Templates 113
Bean usage 91
Bean Wizard 178
Beans Folder Pop-up Menu 33
Benefits 7
Building application 80
CH file 128
Changes in generated code 128
Changing target CPU 85
Choosing a bean 37
Code generation 120
Code optimizations 125
Comparing generated code 33
Concepts 11
Configuration inspector 49
Configurations 110, 31, 30
Control registers 131
CPU Beans 84
CPU block diagram 51
CPU package 51
CPU Parameters Overview 59
CPU Peripherals 87
CPU Properties Overview 86
CPU Timing Model 55
CPU Types Overview 59
CPUs 32
Creating own beans 178
Default Values for Properties 48
Design Time Checking 111
Documentations menu 36
Drag and drop 28
Driver 14
Embedded Beans 81
Enabling bean 91
Environment options 20
Error codes 89
Error Window 50
Events 95, 14
Features 9
File Editor 66
Freeze generated code 18
Generated modules 35
HC08 implementation details 100
HCS12 implementation details 109
Help menu 25
High speed mode 86
Icons in Project Panel 27
Implementation details 98
Import from Quick-Start 20, 133
Inheritance 117
Init Bean usage 92
Init Method usage 92
Initializing bean 92

Inspector 39
Inspector items 41
Installed beans 25
Installed updates 26
Internal peripherals 14
Interrupt initialization 93
Interrupt Vector 96
Interrupt Vector Table 96
Interrupts 95
Items Visibility 43
Levels of abstraction 83
List of Installed Beans 61
Low speed mode 86
Low-level access 130
Macros 23
Manifest constants 128
Manual 25
Memory Map 57
Methods 14
Methods and events 81
Methods and events usage 91
Module 14
MON8 on HC08 108
Optimizing communication beans 127
Optimizing Port I/O 126
Optimizing timers 126
PDF Search 72
Peripheral direct control 131
Peripheral Initialization 63
Peripheral Initialization Bean 14
Peripherals Usage 65
PESL 14, 131
PESL Folder Menu 36
Pin Sharing 119
Plug-in 5
Porperty types 41
Predefined Symbols 88
Priorities 97
Processor Expert Tab 26
Project options 20
Project Panel 26
Properties 15
Quick Start 80
Renaming peripherals 87
Reserving CPU resources 44
Reset scenario 94
Resource Meter 56
Review generated code 123
Search Regular Expressions 74
Shared ancestor bean 118, 117
Sharing pins with multiple beans 119
Signals 116
Slow speed mode 86
Speed modes 86
Target CPU 51, 15
Target switching 110
Template 15
Terms 14
Timing 45
Timing units 47
Tip of the day 25
Tool Setup 21
Tracking changes in generated code 123
Tutorial 134
Update from package 19
Used CPU resources 44
User changes in a bean code 33
User Interface 16



- 180 -

Processor Expert User's manual Index

User module 15
User modules 80, 35
Using mouse in Project Panel 28
Version Specific Items 48




