
Digital Television – Lecture 5 

Forward Error Correction (FEC) 
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Error Correction in Transmissions 

 Need for error correction in transmissions 

– Loss of data during transmissions can make received data 

useless 

 Different FEC methods in DVB: 

– Reed-Solomon codes (byte level, block code) 

– Convolutional codes (bit level, streaming code) 

– Low-Density Parity-Check codes (bit level, block code) 

 FEC codes are combined with other methods to 

improve error correction performances on average 

– Interleaving (bit and byte levels) 

– Pseudo Random Bit Scrambling (bit level) 
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DVB Forward Error Correction 

 Target: the transport stream should be Quasi Error 

Free (QEF) at the receiver 

– Bit Error Rate (BER) < 10-10, i.e. 1 error on 1010 bits 

 Compare with TCP: 

– Error free reception by resending packets 

 Repetition code:  

– Transmit every bit e.g. 3 times. Receiver votes on the correct 

value 

 Resending data not feasible solution in video 

streaming services and is in general very costly 

 The repetition code is the worst possible error 

correction code existing 
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Basics for Error Correction 

 Assume that the (source/information) bits at the transmitter can be 

grouped into words of k bits 

 A FEC code C maps each possible sequence of the k bits onto 

unique codewords of length n>k (2k different codewords) 

 In a systematic code, the source bits are contained sequentially 

within each codeword, either in the beginning or the end. This is 

not the case in a non-systematic code 

 Example: k=2 and n=5 
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Basics for Error Correction 

 For two bit vectors x and y of length n, the Hamming distance is 

defined as 

  

  

 i.e., the number of bits that are different in x and y 

 x = 01110001110 

y = 01111011110 

 d(x,y) = 2 

 We try to find a code C that maximizes the distance between any 

two codewords in C, i.e., maximize the minimum Hamming 

distance 
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𝑑 𝑥, 𝑦 ≔   𝑖: 𝑥𝑖 ≠ 𝑦𝑖 , 0 ≤ 𝑖 < 𝑛   

𝑑𝑚𝑖𝑛 = min
𝑥,𝑦∈𝐶

 𝑑 𝑥, 𝑦 |𝑥 ≠ 𝑦  



Basics for Error Correction 

 The minimum Hamming distance allows us to determine the 

minimum error correction capability t of any block code 

 

 

 A code C with codeword length n and information length k has a 

code rate defined as r=k/n 

– Fraction of the available bandwidth used for transmitting source data 

– Example: A code C with r=1/2 is used in a network with 

transmission rate 1 Mbps. Because of the code rate, useful 

information is received at a rate of 0.5 Mbps. 

 We want to have a code C with as high code rate as possible and 

as large dmin as possible 

– The choice of code rate is a design parameter 
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𝑡 =  
𝑑𝑚𝑖𝑛 − 1

2
  𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1 



Parity-Check Example 

 Add a parity bit to the end of each sequence of k information bits 

  011 0 

  010 1 

  101 0 

 The value of the parity bit is chosen so that there is an even 

number of 1’s in the bit sequence; corresponds to exclusive-OR of 

the bits 

 The minimum Hamming distance between any two codewords in 

this type of a parity check code is 2 

 In this systematic code, the codeword length is 4 bits of which 3 

bits contain source information. A single bit error can now be 

detected, but not corrected 

 The example code has code rate r=3/4, i.e., 75% of the available 

bandwidth is used for transmitting source data 
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Error Correction 

 Parity checking enables error detection. It is also possible to 

construct codes, that can perform error correction 

 Idea: construct a code, where the Hamming distance between any 

two codewords is as large as possible. 

 For any received word r, compare the received word with all 

codewords in the code, and select the codeword which has the 

smallest Hamming distance to r 
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Forward Error Correction 

 The term Forward in Forward Error Correction comes from the 

fact that the error correction is in a sense done in advance, i.e., 

parity data is added prior to transmission 

 FEC coding only makes sense if the bit error rate while using 

coding is less than without coding  coding gain 
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Parity-Check Codes 

 We have seen that codes with a single parity bit at the end of each 

codeword has minimum Hamming distance 2. 

– Such a code can only detect errors 

 Suppose we have 9 source bits a=(a1,..., a9), and arrange them in a 

square. Add a parity bit to each column and each row 

 

 

 

 

 

 This gives us the possibility to detect and correct errors 
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a1 a2 a3 p1 
a4 a5 a6 p2 

a7 a8 a9 p3 

p4 p5 p6  

a1a2a3=p1  a1a4a7=p4 
a4a5a6=p2  a2a5a8=p5 

a7a8a9=p3  a3a6a9=p6 
 

 denotes exclusive-OR 



Parity-Check Codes 

 The set of equations for the example code can be rewritten as 

 

 

 

 Define the codeword vector as x=(a1,..., a9, p1,..., p6), and express 

the system of equations with the parity-check matrix H.  

 A valid codeword satisfies HxT=0 

– Summations are done modulo 2; corresponds to exclusive-OR 
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a1a2a3p1=0  a1a4a7p4=0 
a4a5a6p2=0  a2a5a8p5=0 

a7a8a9p3=0  a3a6a9p6=0 
 



Parity-Check Codes 

 In the parity-check matrix H, each row corresponds to a parity-

check constraint and each column corresponds to the parity-check 

constraints that a given bit participates in 

 The minimum Hamming distance can be determined from the 

parity-check matrix: 

 

 A parity-check code C has minimum Hamming distance d if and 

only if any d-1 columns of its parity-check matrix are linearly 

independent but some d columns are linearly dependent 

 

 The example code on the previous slide has dmin=3, i.e., it is 

guaranteed to correct 1 bit error.  

– If more errors than 1 occur, we cannot predict if the code can correct 

them or not 
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Towards Good Codes 

 In order to obtain good parity-check codes, we need to increase 

the minimum Hamming distance 

 

 To do this, we need to add more 1’s to the parity-check matrix H, 

in order to decrease the linear dependencies between the columns 

 

 In general, each column should have a weight (number of non-

zero entries) of at least 2 

– The identity sub matrix at the right side of the parity-check matrix in 

the example code is one of the major reasons to its low minimum 

Hamming distance 
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Low-Density Parity-Check Codes 

 LDPC codes are one of the best existing FEC codes 

– DVB-T2, DVB-S2 

 The code length n is typically very large 

– In DVB-T2 and DVB-S2: n=64 800 or n = 16200 bits 

 LDPC codes are sparse, i.e., the fraction of non-zero entries in H 

goes towards zero when n   

 The parity-check matrices are often generated at random, 

according to constraints on the distributions of the column and 

row weights 

 Example: in an LDPC code, 1/3 of the columns should have 

weight 3, 1/3 of the columns should have weight 2, and 1/3 of the 

columns should have weight 1, while each row should have 

weight 4 
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DVB-T2 LDPC Parity-Check Matrix 
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Encoding 

 A code C maps the source bits to unique codewords 

 When the information length k is large, it is impossible to 

maintain a list of all codewords of the code 

– A code with k=5000 has 2k 1.4*101505 codewords, where each 

codeword is n bits 

 Codewords are computed based on the source bits at the encoder 

 In some cases, the codewords can be computed directly using the 

parity-check matrix 

– Systematic codes, where the sub matrix for the parity bits is lower or 

upper triangular 

 In general, however, a generator matrix G, needs to be 

determined for encoding purposes 

– Instead of storing all possible codewords in memory, we only need 

to store the generator and parity-check matrices in memory 
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Encoding 

 If we can (through simple row and column operations) bring H 

into the form H=[ P | I ], where P is a random sub matrix, and I is 

the identity matrix corresponding to the parity columns, then the 

generator matrix G is obtained as 
 

    G=[ I | PT ] 
 

 From the source bits a=(a1,..., ak), the codeword x is obtained as 

x=aG 

 Example: k=2 and n=5 

 

 

 

 a=(0 1)         x = aG = [0 1 1 1 0]    and     HxT=0 
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Tanner Graph Representation 

 The parity-check matrix can be visualized using Tanner graphs 

(bipartite graphs) 
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Decoding of LDPC Codes 

 Decoding is an iterative message passing process 

 Initially, only beliefs of the bit values are available at the decoder 

 The beliefs propagate through the graph → Belief-Propagation 

(BP) decoder 

 One decoding iterations is as follows 

– Each variable node sends its belief of the bit value over all its edges 

to the corresponding check nodes 

– The check nodes compute the most likely bit values for all their 

neighbours (variable nodes they are connected to) and send these 

beliefs back 

– The variable nodes update their beliefs on the bit values using the 

incoming messages 

 The decoder continues to iterate until a valid codeword has been 

found, or a maximum number of iterations has been performed 
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Decoding of LDPC Codes 

 In DVB-T2 and DVB-S2, the LDPC codes are used so early in 

the communication chain that only likelihoods about the bit 

values are available to the decoder 

 

 Each bit xi is assigned a log-likelihood ratio (LLR) prior to 

decoding, defined as 

 

 

 where yi is received information for bit i 

 The magnitude of the LLR represents the probability of the bit 

having a certain value 

 The sign of the LLR tells us if the probability of the bit value 

leans towards 0 or 1 

8.4.2013 Åbo Akademi University | Domkyrkotorget 3 | 20500 Åbo 20 

𝐿𝐿𝑅 𝑥𝑖|𝑦𝑖 = log  
P(𝑥𝑖 = 0|𝑦𝑖)

P(𝑥𝑖 = 1|𝑦𝑖)
  



Decoding Example 

 Assume that bits are either received correctly or known to be 

erroneous (erasures) 

– This channel model is known as the Binary Erasure Channel (BEC) 

 

 

 

 

 The codeword x = (0 1 0 1 0 1 0) is transmitted 

 The received word is y = (0 ? ? 1 0 ? 0), where ? denotes an 

erasure (known error) 

– Greatly simplified example w.r.t. decoding in DVB. Here, messages 

passed will have values 0, 1, or ?, but in practice each message 

passed is an LLR value, i.e., floating point value. 

– The main decoding procedure is still the same 
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Decoding Example 

 Step 1: Variable to check 

– The variable nodes send their beliefs on the bit values to the check 

nodes, i.e., the beliefs are known to be correct or erasures because of 

the BEC 

– y is the received codeword and x’ is the estimated codeword 
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Decoding Example 

 Step 2: Check to Variable 

– The check nodes process the incoming messages, such that the 

constraints should be fulfilled 

– HxT should be 0, i.e. the sum modulo 2 of all bit values participating 

in all parity-check constraints (checks nodes) should be 0 
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Decoding Example 

 Step 2: Check to Variable (continued) 

– Each check node sends a message back to each of its variable nodes 

– A message from a check node is equal to the sum modulo 2 of all 

incoming message, excluding the message that came from the 

variable node to where this message is being sent 
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Decoding Example 

 Step 1: Variable to check 

– The variable nodes sends their updated beliefs on their bit values to 

the check nodes 

– At a variable node, the outgoing message is an erasure if all 

incoming messages are erasures and the received messages is an 

erasure 
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Decoding Example 

 Step 2: Check to Variable 

– Each check node sends back their beliefs on the symbol values to 

each of its variable nodes, which satisfy their constraints 
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Decoding Example 

 Step 1: Variable to check 

– The variable nodes sends their updated beliefs on their bit values to 

the check nodes 
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Decoding Example 

 Step 2: Check to Variable 

– Each check node sends back their beliefs on the bit values to each of 

its variable nodes, which satisfy their constraints 

 Decoding completed, i.e. original codeword recovered 
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LDPC Code Performance 

 Although the minimum Hamming distance is commonly used to 

measure code performance, in the case of LDPC codes, this 

measure is not adequate. 

– LDPC codes typically have far better error correcting performance 

than what can be derived from the minimum Hamming distance 

 Well designed LDPC codes have performances that are very close 

to what is theoretically possible to achieve in communications 

(Shannon limit) 
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Coding in DVB 

 LDPC codes produce small error floors 

– Occasional bit errors when one would expect zero BERs 

 In second generation DVB standards, BCH (Bose-Chaudhuri-

Hocquenghem) codes are used to correct any bit errors that may 

be present after LDPC decoding 

– The BCH codes have an error correction capability of roughly 12 

bits in the BCH codewords of  lengths 30 000 – 50 000 bits 

 In first generation DVB standards, the coding scenario is different 

– Instead of LDPC codes, convolutional codes (less powerful) are used 

– Concatenated with Reed-Solomon codes, where each RS code 

protects a TS packet (RS codes operate on bytes instead of bits) 

• n = 204, k = 188, error correction capability 8 bytes 

 The second generation DVB coding scheme is significantly better 

than the one in the first generation DVB standards 
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DVB-T Transmitter Block 

Diagram 
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DVB-T2 Transmitter Block 

Diagram 
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